MomentumOptimizer¶
-
class
ampligraph.latent_features.
MomentumOptimizer
(optimizer_params, batches_count, verbose=False)¶ Wrapper around Momentum Optimizer
Methods
__init__
(optimizer_params, batches_count[, …])Initialize the Optimizer minimize
(loss)Create an optimizer to minimize the model loss update_feed_dict
(feed_dict, batch_num, epoch_num)Fills values of placeholders created by the optimizers. -
__init__
(optimizer_params, batches_count, verbose=False)¶ Initialize the Optimizer
Parameters: - optimizer_params (dict) –
Consists of key-value pairs. The optimizer will check the keys to get the corresponding params:
- ’lr’: (float). Learning Rate (default: 0.0005)
- ’momentum’: (float). Momentum (default: 0.9)
Example:
optimizer_params={'lr': 0.001, 'momentum':0.90}
- batches_count (int) – number of batches in an epoch
- verbose (bool) – Enable/disable verbose mode
- optimizer_params (dict) –
-
minimize
(loss)¶ Create an optimizer to minimize the model loss
Parameters: loss (tf.Tensor) – Node which needs to be evaluated for computing the model loss. Returns: train – Node that needs to be evaluated for minimizing the loss during training Return type: tf.Operation
-
update_feed_dict
(feed_dict, batch_num, epoch_num)¶ Fills values of placeholders created by the optimizers.
Parameters: - feed_dict (dict) – Dictionary that would be passed while optimizing the model loss to sess.run.
- batch_num (int) – current batch number
- epoch_num (int) – current epoch number
-