Performance¶
Predictive Performance¶
We report AmpliGraph 2 filtered MR, MRR, Hits@1,3,10 results for the most common datasets used in literature.
Note
AmpliGraph 1.x Benchmarks. AmpliGraph 1.x predictive power report is available here.
FB15K-237¶
Model |
MR |
MRR |
Hits@1 |
Hits@3 |
Hits@10 |
Hyperparameters |
---|---|---|---|---|---|---|
TransE |
222 |
0.31 |
0.22 |
0.35 |
0.49 |
k: 400; epochs: 4000; eta: 30; loss: multiclass_nll; regularizer: LP; regularizer_params: lambda: 0.0001; p: 2; optimizer: adam; optimizer_params: lr: 0.0001; embedding_model_params: norm: 1; seed: 0; batches_count: 5; |
DistMult |
211 |
0.30 |
0.21 |
0.33 |
0.48 |
k: 300; epochs: 4000; eta: 50; loss: multiclass_nll; regularizer: LP; regularizer_params: lambda: 0.0001; p: 3; optimizer: adam; optimizer_params: lr: 0.00005; seed: 0; batches_count: 50; |
ComplEx |
204 |
0.31 |
0.22 |
0.34 |
0.49 |
k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; optimizer_params: lr: 0.00005; seed: 0; regularizer: LP; regularizer_params: lambda: 0.0001; p: 3; batches_count: 10; |
HolE |
190 |
0.30 |
0.21 |
0.33 |
0.48 |
k: 350; epochs: 4000; eta: 50; loss: multiclass_nll; regularizer: LP; regularizer_params: lambda: 0.0001; p: 2; optimizer: adam; optimizer_params: lr: 0.0001; seed: 0; batches_count: 64; |
Note
FB15K-237 validation and test sets include triples with entities that do not occur in the training set. We found 8 unseen entities in the validation set and 29 in the test set. In the experiments we excluded the triples where such entities appear (9 triples in from the validation set and 28 from the test set).
WN18RR¶
Model |
MR |
MRR |
Hits@1 |
Hits@3 |
Hits@10 |
Hyperparameters |
---|---|---|---|---|---|---|
TransE |
3143 |
0.22 |
0.03 |
0.38 |
0.52 |
k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; optimizer_params: lr: 0.0001; regularizer: LP; regularizer_params: lambda: 0.0001; p: 2; seed: 0; embedding_model_params: norm: 1; batches_count: 150; |
DistMult |
4832 |
0.47 |
0.43 |
0.48 |
0.54 |
k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; optimizer_params: lr: 0.0001; regularizer: LP; regularizer_params: lambda: 0.0001; p: 2; seed: 0; batches_count: 100; |
ComplEx |
4356 |
0.51 |
0.47 |
0.52 |
0.58 |
k: 200; epochs: 4000; eta: 20; loss: multiclass_nll; loss_params: margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; regularizer: LP; regularizer_params: lambda: 0.05; p: 3; batches_count: 10; |
HolE |
7072 |
0.47 |
0.44 |
0.49 |
0.54 |
k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count: 50; |
Note
WN18RR validation and test sets include triples with entities that do not occur in the training set. We found 198 unseen entities in the validation set and 209 in the test set. In the experiments we excluded the triples where such entities appear (210 triples in from the validation set and 210 from the test set).
YAGO3-10¶
Model |
MR |
MRR |
Hits@1 |
Hits@3 |
Hits@10 |
Hyperparameters |
---|---|---|---|---|---|---|
TransE |
1210 |
0.50 |
0.41 |
0.56 |
0.67 |
k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; optimizer_params: lr: 0.0001; regularizer: LP; regularizer_params: lambda: 0.0001; p: 2; embedding_model_params: norm: 1; seed: 0; batches_count: 100; |
DistMult |
2301 |
0.48 |
0.39 |
0.53 |
0.64 |
k: 350; epochs: 4000; eta: 50; loss: multiclass_nll; optimizer: adam; optimizer_params: lr: 5e-05; regularizer: LP; regularizer_params: lambda: 0.0001; p: 3; seed: 0; batches_count: 100; |
ComplEx |
3153 |
0.49 |
0.40 |
0.54 |
0.65 |
k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; optimizer_params: lr: 5e-05; regularizer: LP; regularizer_params: lambda: 0.0001; p: 3; seed: 0; batches_count: 100 |
HolE |
6941 |
0.47 |
0.39 |
0.52 |
0.62 |
k: 350; epochs: 4000; eta: 30; loss: self_adversarial; loss_params: alpha: 1; margin: 0.5; optimizer: adam; optimizer_params: lr: 0.0001; seed: 0; batches_count: 100 |
Note
YAGO3-10 validation and test sets include triples with entities that do not occur in the training set. We found 22 unseen entities in the validation set and 18 in the test set. In the experiments we excluded the triples where such entities appear (22 triples in from the validation set and 18 from the test set).
FB15K¶
Warning
The dataset includes a large number of inverse relations, and its use in experiments has been deprecated. Use FB15k-237 instead.
Model |
MR |
MRR |
Hits@1 |
Hits@3 |
Hits@10 |
Hyperparameters |
---|---|---|---|---|---|---|
TransE |
45 |
0.62 |
0.48 |
0.72 |
0.84 |
k: 150; epochs: 4000; eta: 10; loss: multiclass_nll; optimizer: adam; optimizer_params: lr: 5e-5; regularizer: LP; regularizer_params: lambda: 0.0001; p: 3; embedding_model_params: norm: 1; seed: 0; batches_count: 100; |
DistMult |
227 |
0.71 |
0.66 |
0.75 |
0.80 |
k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count: 50; |
ComplEx |
199 |
0.73 |
0.68 |
0.77 |
0.82 |
k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; regularizer: LP; regularizer_params: lambda: 0.0001; p: 3; seed: 0; batches_count: 100; |
HolE |
238 |
0.73 |
0.67 |
0.77 |
0.82 |
k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count: 20; |
WN18¶
Warning
The dataset includes a large number of inverse relations, and its use in experiments has been deprecated. Use WN18RR instead.
Model |
MR |
MRR |
Hits@1 |
Hits@3 |
Hits@10 |
Hyperparameters |
---|---|---|---|---|---|---|
TransE |
278 |
0.66 |
0.42 |
0.88 |
0.95 |
k: 150; epochs: 4000; eta: 10; loss: multiclass_nll; optimizer: adam; optimizer_params: lr: 5e-5; regularizer: LP; regularizer_params: lambda: 0.0001; p: 3; embedding_model_params: norm: 1; seed: 0; batches_count: 100; |
DistMult |
699 |
0.82 |
0.71 |
0.92 |
0.95 |
k: 200; epochs: 4000; eta: 20; loss: nll; loss_params: margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count: 50; |
ComplEx |
713 |
0.94 |
0.93 |
0.95 |
0.95 |
k: 200; epochs: 4000; eta: 20; loss: nll; loss_params: margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count: 20; |
HolE |
676 |
0.94 |
0.93 |
0.94 |
0.95 |
k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count: 50; |
To reproduce the above results:
$ cd experiments
$ python predictive_performance.py
Note
Running predictive_performance.py
on all datasets, for all models takes ~34 hours on
an an Intel Xeon Gold 6226R, 256 GB, equipped with Tesla A100 40GB GPUs and Ubuntu 20.04.
Note
All of the experiments above were conducted with early stopping on half the validation set.
Typically, the validation set can be found in X['valid']
.
We only used half the validation set so the other half is available for hyperparameter tuning.
The exact early stopping configuration is as follows:
x_valid: validation[::2]
criteria: mrr
x_filter: train + validation + test
stop_interval: 4
burn_in: 0
check_interval: 50
Note that early stopping can save a lot of training time, but it also adds some computational cost to the learning procedure. To lessen it, you may either decrease the validation set, the stop interval, the check interval, or increase the burn in.
Experiments can be limited to specific models-dataset combinations as follows:
$ python predictive_performance.py -h
usage: predictive_performance.py [-h] [-d {fb15k,fb15k-237,wn18,wn18rr,yago310}]
[-m {complex,transe,distmult,hole}]
optional arguments:
-h, --help show this help message and exit
-d {fb15k,fb15k-237,wn18,wn18rr,yago310}, --dataset {fb15k,fb15k-237,wn18,wn18rr,yago310}
-m {complex,transe,distmult,hole}, --model {complex,transe,distmult,hole}
Runtime Performance¶
Training the models on FB15K-237 (k=100, eta=10, batches_count=10, loss=multiclass_nll
), on an Intel Xeon
Gold 6226R, 256 GB, equipped with Tesla A100 40GB GPUs and Ubuntu 20.04 gives the following runtime report:
model |
seconds/epoch |
---|---|
ComplEx |
0.18 |
TransE |
0.09 |
DistMult |
0.10 |
HolE |
0.18 |