
AmpliGraph
Release 1.3.2

Luca Costabello - Accenture Labs Dublin

Aug 25, 2020

CONTENTS:

1 Key Features 3

2 Modules 5

3 How to Cite 7

Bibliography 139

Python Module Index 141

Index 143

i

ii

AmpliGraph, Release 1.3.2

Open source Python library that predicts links between concepts in a knowledge graph.

Go to the GitHub repository

Join the conversation on Slack

AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that
deals with supervised learning on knowledge graphs.

Use AmpliGraph if you need to:

• Discover new knowledge from an existing knowledge graph.

• Complete large knowledge graphs with missing statements.

• Generate stand-alone knowledge graph embeddings.

• Develop and evaluate a new relational model.

AmpliGraph’s machine learning models generate knowledge graph embeddings, vector representations of concepts
in a metric space:

CONTENTS: 1

https://github.com/Accenture/AmpliGraph/
https://github.com/Accenture/AmpliGraph/
https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg
https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg\T1\textgreater {}

AmpliGraph, Release 1.3.2

It then combines embeddings with model-specific scoring functions to predict unseen and novel links:

2 CONTENTS:

CHAPTER

ONE

KEY FEATURES

• Intuitive APIs: AmpliGraph APIs are designed to reduce the code amount required to learn models that predict
links in knowledge graphs.

• GPU-Ready: AmpliGraph is based on TensorFlow, and it is designed to run seamlessly on CPU and GPU
devices - to speed-up training.

• Extensible: Roll your own knowledge graph embeddings model by extending AmpliGraph base estimators.

3

AmpliGraph, Release 1.3.2

4 Chapter 1. Key Features

CHAPTER

TWO

MODULES

AmpliGraph includes the following submodules:

• Datasets: helper functions to load datasets (knowledge graphs).

• Models: knowledge graph embedding models. AmpliGraph contains TransE, DistMult, ComplEx, HolE,
ConvE, ConvKB (More to come!)

• Evaluation: metrics and evaluation protocols to assess the predictive power of the models.

• Discovery: High-level convenience APIs for knowledge discovery (discover new facts, cluster entities, predict
near duplicates).

5

AmpliGraph, Release 1.3.2

6 Chapter 2. Modules

CHAPTER

THREE

HOW TO CITE

If you like AmpliGraph and you use it in your project, why not starring the project on GitHub!

If you instead use AmpliGraph in an academic publication, cite as:

@misc{ampligraph,
author= {Luca Costabello and

Sumit Pai and
Chan Le Van and
Rory McGrath and
Nick McCarthy and
Pedro Tabacof},

title = {{AmpliGraph: a Library for Representation Learning on Knowledge Graphs}},
month = mar,
year = 2019,
doi = {10.5281/zenodo.2595043},
url = {https://doi.org/10.5281/zenodo.2595043}

}

3.1 Installation

3.1.1 Prerequisites

• Linux, macOS, Windows

• Python 3.7

Provision a Virtual Environment

Create and activate a virtual environment (conda)

conda create --name ampligraph python=3.7
source activate ampligraph

7

https://github.com/Accenture/AmpliGraph/
https://github.com/Accenture/AmpliGraph/stargazers/
https://doi.org/10.5281/zenodo.2595043

AmpliGraph, Release 1.3.2

Install TensorFlow

AmpliGraph is built on TensorFlow 1.x. Install from pip or conda:

CPU-only

pip install "tensorflow>=1.15.2,<2.0"

or

conda install tensorflow'>=1.15.2,<2.0.0'

GPU support

pip install "tensorflow-gpu>=1.15.2,<2.0"

or

conda install tensorflow-gpu'>=1.15.2,<2.0.0'

3.1.2 Install AmpliGraph

Install the latest stable release from pip:

pip install ampligraph

If instead you want the most recent development version, you can clone the repository and install from source as below
(also see the How to Contribute guide for details):

git clone https://github.com/Accenture/AmpliGraph.git
cd AmpliGraph
git checkout develop
pip install -e .

3.1.3 Sanity Check

>> import ampligraph
>> ampligraph.__version__
'1.3.2'

3.2 Background

For a comprehensive theoretical and hands-on overview of KGE models and hands-on AmpliGraph, check out our
ECAI-20 Tutorial (Slides + Recording + Colab Notebook).

Knowledge graphs are graph-based knowledge bases whose facts are modeled as relationships between entities.
Knowledge graph research led to broad-scope graphs such as DBpedia [ABK+07], WordNet [Pri10], and YAGO
[SKW07]. Countless domain-specific knowledge graphs have also been published on the web, giving birth to the
so-called Web of Data [BHBL11].

Formally, a knowledge graph 𝒢 = {(𝑠𝑢𝑏, 𝑝𝑟𝑒𝑑, 𝑜𝑏𝑗)} ⊆ ℰ ×ℛ× ℰ is a set of (𝑠𝑢𝑏, 𝑝𝑟𝑒𝑑, 𝑜𝑏𝑗) triples, each including
a subject 𝑠𝑢𝑏 ∈ ℰ , a predicate 𝑝𝑟𝑒𝑑 ∈ ℛ, and an object 𝑜𝑏𝑗 ∈ ℰ . ℰ andℛ are the sets of all entities and relation types
of 𝒢.

8 Chapter 3. How to Cite

https://kge-tutorial-ecai2020.github.io/

AmpliGraph, Release 1.3.2

Knowledge graph embedding models are neural architectures that encode concepts from a knowledge graph (i.e.
entities ℰ and relation typesℛ) into low-dimensional, continuous vectors ∈ ℛ𝑘. Such textit{knowledge graph embed-
dings} have applications in knowledge graph completion, entity resolution, and link-based clustering, just to cite a few
[NMTG16]. Knowledge graph embeddings are learned by training a neural architecture over a graph. Although such
architectures vary, the training phase always consists in minimizing a loss function ℒ that includes a scoring function
𝑓𝑚(𝑡), i.e. a model-specific function that assigns a score to a triple 𝑡 = (𝑠𝑢𝑏, 𝑝𝑟𝑒𝑑, 𝑜𝑏𝑗) .

The goal of the optimization procedure is learning optimal embeddings, such that the scoring function is able to
assign high scores to positive statements and low scores to statements unlikely to be true. Existing models propose
scoring functions that combine the embeddings e𝑠𝑢𝑏, e𝑝𝑟𝑒𝑑, e𝑜𝑏𝑗 ∈ ℛ𝑘 of the subject, predicate, and object of triple
𝑡 = (𝑠𝑢𝑏, 𝑝𝑟𝑒𝑑, 𝑜𝑏𝑗) using different intuitions: TransE [BUGD+13] relies on distances, DistMult [YYH+14] and
ComplEx [TWR+16] are bilinear-diagonal models, HolE [NRP+16] uses circular correlation. While the above models
can be interpreted as multilayer perceptrons, others such as ConvE include convolutional layers [DMSR18].

As example, the scoring function of TransE computes a similarity between the embedding of the subject e𝑠𝑢𝑏 translated
by the embedding of the predicate e𝑝𝑟𝑒𝑑 and the embedding of the object e𝑜𝑏𝑗 , using the 𝐿1 or 𝐿2 norm || · ||:

𝑓𝑇𝑟𝑎𝑛𝑠𝐸 = −||e𝑠𝑢𝑏 + e𝑝𝑟𝑒𝑑 − e𝑜𝑏𝑗 ||𝑛

Such scoring function is then used on positive and negative triples 𝑡+, 𝑡− in the loss function. This can be for example
a pairwise margin-based loss, as shown in the equation below:

ℒ(Θ) =
∑︁
𝑡+∈𝒢

∑︁
𝑡−∈𝒩

𝑚𝑎𝑥(0, [𝛾 + 𝑓𝑚(𝑡−; Θ)− 𝑓𝑚(𝑡+; Θ)])

where Θ are the embeddings learned by the model, 𝑓𝑚 is the model-specific scoring function, 𝛾 ∈ ℛ is the margin
and 𝒩 is a set of negative triples generated with a corruption heuristic [BUGD+13].

3.3 API

AmpliGraph includes the following submodules:

3.3.1 Datasets

Helper functions to load knowledge graphs.

Note: It is recommended to set the AMPLIGRAPH_DATA_HOME environment variable:

export AMPLIGRAPH_DATA_HOME=/YOUR/PATH/TO/datasets

When attempting to load a dataset, the module will first check if AMPLIGRAPH_DATA_HOME is set. If it is, it will
search this location for the required dataset. If the dataset is not found it will be downloaded and placed in this
directory.

If AMPLIGRAPH_DATA_HOME has not been set the databases will be saved in the following directory:

~/ampligraph_datasets

3.3. API 9

AmpliGraph, Release 1.3.2

Benchmark Datasets Loaders

Use these helpers functions to load datasets used in graph representation learning literature. The functions will au-
tomatically download the datasets if they are not present in ~/ampligraph_datasets or at the location set in
AMPLIGRAPH_DATA_HOME.

load_fb15k_237([check_md5hash, . . .]) Load the FB15k-237 dataset
load_wn18rr([check_md5hash, clean_unseen, . . .]) Load the WN18RR dataset
load_yago3_10([check_md5hash, clean_unseen,
. . .])

Load the YAGO3-10 dataset

load_fb15k([check_md5hash, add_reciprocal_rels]) Load the FB15k dataset
load_wn18([check_md5hash, add_reciprocal_rels]) Load the WN18 dataset
load_wn11([check_md5hash, clean_unseen, . . .]) Load the WordNet11 (WN11) dataset
load_fb13([check_md5hash, clean_unseen, . . .]) Load the Freebase13 (FB13) dataset

load_fb15k_237

ampligraph.datasets.load_fb15k_237(check_md5hash=False, clean_unseen=True,
add_reciprocal_rels=False)

Load the FB15k-237 dataset

FB15k-237 is a reduced version of FB15K. It was first proposed by [TCP+15].

The FB15k-237 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If
AMPLIGRAPH_DATA_HOME is not set the the default ~/ampligraph_datasets is checked.

If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME or
~/ampligraph_datasets.

The dataset is divided in three splits:

• train

• valid

• test

Dataset Train Valid Test Entities Relations
FB15K-237 272,115 17,535 20,466 14,541 237

Warning: FB15K-237’s validation set contains 8 unseen entities over 9 triples. The test set has 29 unseen
entities, distributed over 28 triples.

Parameters

• check_md5hash (boolean) – If True check the md5hash of the files. Defaults to
False.

• clean_unseen (bool) – If True, filters triples in validation and test sets that include
entities not present in the training set.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

10 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Returns splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is an
ndarray of shape [n, 3].

Return type dict

Examples

>>> from ampligraph.datasets import load_fb15k_237
>>> X = load_fb15k_237()
>>> X["train"][2]
array(['/m/07s9rl0', '/media_common/netflix_genre/titles', '/m/0170z3'],
dtype=object)

load_wn18rr

ampligraph.datasets.load_wn18rr(check_md5hash=False, clean_unseen=True,
add_reciprocal_rels=False)

Load the WN18RR dataset

The dataset is described in [DMSR18].

The WN18RR dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If
AMPLIGRAPH_DATA_HOME is not set the the default ~/ampligraph_datasets is checked.

If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME or
~/ampligraph_datasets.

It is divided in three splits:

• train

• valid

• test

Dataset Train Valid Test Entities Relations
WN18RR 86,835 3,034 3,134 40,943 11

Warning: WN18RR’s validation set contains 198 unseen entities over 210 triples. The test set has 209
unseen entities, distributed over 210 triples.

Parameters

• clean_unseen (bool) – If True, filters triples in validation and test sets that include
entities not present in the training set.

• check_md5hash (bool) – If True check the md5hash of the datset files. Defaults to
False.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

Returns splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is an
ndarray of shape [n, 3].

3.3. API 11

AmpliGraph, Release 1.3.2

Return type dict

Examples

>>> from ampligraph.datasets import load_wn18rr
>>> X = load_wn18rr()
>>> X["valid"][0]
array(['02174461', '_hypernym', '02176268'], dtype=object)

load_yago3_10

ampligraph.datasets.load_yago3_10(check_md5hash=False, clean_unseen=True,
add_reciprocal_rels=False)

Load the YAGO3-10 dataset

The dataset is a split of YAGO3 [MBS13], and has been first presented in [DMSR18].

The YAGO3-10 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If
AMPLIGRAPH_DATA_HOME is not set the the default ~/ampligraph_datasets is checked.

If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME or
~/ampligraph_datasets.

It is divided in three splits:

• train

• valid

• test

Dataset Train Valid Test Entities Relations
YAGO3-10 1,079,040 5,000 5,000 123,182 37

Parameters

• check_md5hash (boolean) – If True check the md5hash of the files. Defaults to
False.

• clean_unseen (bool) – If True, filters triples in validation and test sets that include
entities not present in the training set.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

Returns splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is an
ndarray of shape [n, 3].

Return type dict

12 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Examples

>>> from ampligraph.datasets import load_yago3_10
>>> X = load_yago3_10()
>>> X["valid"][0]
array(['Mikheil_Khutsishvili', 'playsFor', 'FC_Merani_Tbilisi'], dtype=object)

load_fb15k

ampligraph.datasets.load_fb15k(check_md5hash=False, add_reciprocal_rels=False)
Load the FB15k dataset

Warning: The dataset includes a large number of inverse relations that spilled to the test set, and its use in
experiments has been deprecated. Use FB15k-237 instead.

FB15k is a split of Freebase, first proposed by [BUGD+13].

The FB15k dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If
AMPLIGRAPH_DATA_HOME is not set the the default ~/ampligraph_datasets is checked.

If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME or
~/ampligraph_datasets.

The dataset is divided in three splits:

• train

• valid

• test

Dataset Train Valid Test Entities Relations
FB15K 483,142 50,000 59,071 14,951 1,345

Parameters

• check_md5hash (boolean) – If True check the md5hash of the files. Defaults to
False.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

Returns splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is an
ndarray of shape [n, 3].

Return type dict

3.3. API 13

AmpliGraph, Release 1.3.2

Examples

>>> from ampligraph.datasets import load_fb15k
>>> X = load_fb15k()
>>> X['test'][:3]
array([['/m/01qscs',

'/award/award_nominee/award_nominations./award/award_nomination/award',
'/m/02x8n1n'],

['/m/040db', '/base/activism/activist/area_of_activism', '/m/0148d'],
['/m/08966',
'/travel/travel_destination/climate./travel/travel_destination_monthly_

→˓climate/month',
'/m/05lf_']], dtype=object)

load_wn18

ampligraph.datasets.load_wn18(check_md5hash=False, add_reciprocal_rels=False)
Load the WN18 dataset

Warning: The dataset includes a large number of inverse relations that spilled to the test set, and its use in
experiments has been deprecated. Use WN18RR instead.

WN18 is a subset of Wordnet. It was first presented by [BUGD+13].

The WN18 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If
AMPLIGRAPH_DATA_HOME is not set the the default ~/ampligraph_datasets is checked.

If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME or
~/ampligraph_datasets.

The dataset is divided in three splits:

• train: 141,442 triples

• valid 5,000 triples

• test 5,000 triples

Dataset Train Valid Test Entities Relations
WN18 141,442 5,000 5,000 40,943 18

Parameters

• check_md5hash (bool) – If True check the md5hash of the files. Defaults to False.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

Returns splits – The dataset splits {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is an ndarray
of shape [n, 3].

Return type dict

14 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Examples

>>> from ampligraph.datasets import load_wn18
>>> X = load_wn18()
>>> X['test'][:3]
array([['06845599', '_member_of_domain_usage', '03754979'],

['00789448', '_verb_group', '01062739'],
['10217831', '_hyponym', '10682169']], dtype=object)

load_wn11

ampligraph.datasets.load_wn11(check_md5hash=False, clean_unseen=True,
add_reciprocal_rels=False)

Load the WordNet11 (WN11) dataset

WordNet was originally proposed in WordNet: a lexical database for English [Mil95].

WN11 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If
AMPLIGRAPH_DATA_HOME is not set the the default ~/ampligraph_datasets is checked.

If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME or
~/ampligraph_datasets.

It is divided in three splits:

• train

• valid

• test

Both the validation and test splits are associated with labels (binary ndarrays), with True for positive statements
and False for negatives:

• valid_labels

• test_labels

Dataset Train Valid Pos Valid Neg Test Pos Test Neg Entities Relations
WN11 110361 2606 2609 10493 10542 38588 11

Parameters

• check_md5hash (boolean) – If True check the md5hash of the files. Defaults to
False.

• clean_unseen (bool) – If True, filters triples in validation and test sets that include
entities not present in the training set.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

Returns splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘valid_labels’: valid_labels, ‘test’:
test, ‘test_labels’: test_labels}. Each split containing a dataset is an ndarray of shape [n, 3]. The
labels are ndarray of shape [n].

Return type dict

3.3. API 15

AmpliGraph, Release 1.3.2

Examples

>>> from ampligraph.datasets import load_wn11
>>> X = load_wn11()
>>> X["valid"][0]
array(['__genus_xylomelum_1', '_type_of', '__dicot_genus_1'], dtype=object)
>>> X["valid_labels"][0:3]
array([True, False, True])

load_fb13

ampligraph.datasets.load_fb13(check_md5hash=False, clean_unseen=True,
add_reciprocal_rels=False)

Load the Freebase13 (FB13) dataset

FB13 is a subset of Freebase [BEP+08] and was initially presented in Reasoning With Neural Tensor Networks
for Knowledge Base Completion [SCMN13].

FB13 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If
AMPLIGRAPH_DATA_HOME is not set the the default ~/ampligraph_datasets is checked.

If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME or
~/ampligraph_datasets.

It is divided in three splits:

• train

• valid

• test

Both the validation and test splits are associated with labels (binary ndarrays), with True for positive statements
and False for negatives:

• valid_labels

• test_labels

Dataset Train Valid Pos Valid Neg Test Pos Test Neg Entities Relations
FB13 316232 5908 5908 23733 23731 75043 13

Parameters

• check_md5hash (boolean) – If True check the md5hash of the files. Defaults to
False.

• clean_unseen (bool) – If True, filters triples in validation and test sets that include
entities not present in the training set.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

Returns splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘valid_labels’: valid_labels, ‘test’:
test, ‘test_labels’: test_labels}. Each split containing a dataset is an ndarray of shape [n, 3]. The
labels are ndarray of shape [n].

Return type dict

16 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Examples

>>> from ampligraph.datasets import load_fb13
>>> X = load_fb13()
>>> X["valid"][0]
array(['cornelie_van_zanten', 'gender', 'female'], dtype=object)
>>> X["valid_labels"][0:3]
array([True, False, True], dtype=object)

Datasets Summary

Dataset Train Valid Test Entities Relations
FB15K-237 272,115 17,535 20,466 14,541 237
WN18RR 86,835 3,034 3,134 40,943 11
FB15K 483,142 50,000 59,071 14,951 1,345
WN18 141,442 5,000 5,000 40,943 18
YAGO3-10 1,079,040 5,000 5,000 123,182 37
WN11 110,361 5,215 21,035 38,194 11
FB13 316,232 11,816 47,464 75,043 13

Warning: WN18 and FB15k include a large number of inverse relations, and its use in experiments has been
deprecated. Use WN18RR and FB15K-237 instead.

Warning: FB15K-237’s validation set contains 8 unseen entities over 9 triples. The test set has 29 unseen entities,
distributed over 28 triples. WN18RR’s validation set contains 198 unseen entities over 210 triples. The test set has
209 unseen entities, distributed over 210 triples.

Note: WN11 and FB13 also provide true and negative labels for the triples in the validation and tests sets. In both
cases the positive base rate is close to 50%.

Loaders for Custom Knowledge Graphs

Functions to load custom knowledge graphs from disk.

load_from_csv(directory_path, file_name[, . . .]) Load a knowledge graph from a csv file
load_from_ntriples(folder_name, file_name[,
. . .])

Load RDF ntriples

load_from_rdf(folder_name, file_name[, . . .]) Load an RDF file

3.3. API 17

AmpliGraph, Release 1.3.2

load_from_csv

ampligraph.datasets.load_from_csv(directory_path, file_name, sep='\t', header=None,
add_reciprocal_rels=False)

Load a knowledge graph from a csv file

Loads a knowledge graph serialized in a csv file as:

subj1 relationX obj1
subj1 relationY obj2
subj3 relationZ obj2
subj4 relationY obj2
...

Note: The function filters duplicated statements.

Note: It is recommended to use ampligraph.evaluation.train_test_split_no_unseen() to
split custom knowledge graphs into train, validation, and test sets. Using this function will lead to validation,
test sets that do not include triples with entities that do not occur in the training set.

Parameters

• directory_path (str) – Folder where the input file is stored.

• file_name (str) – File name.

• sep (str) – The subject-predicate-object separator (default).

• header (int, None) – The row of the header of the csv file. Same as pandas.read_csv
header param.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False)

Returns triples – The actual triples of the file.

Return type ndarray , shape [n, 3]

Examples

>>> from ampligraph.datasets import load_from_csv
>>> X = load_from_csv('folder', 'dataset.csv', sep=',')
>>> X[:3]
array([['a', 'y', 'b'],

['b', 'y', 'a'],
['a', 'y', 'c']],
dtype='<U1')

18 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

load_from_ntriples

ampligraph.datasets.load_from_ntriples(folder_name, file_name, data_home=None,
add_reciprocal_rels=False)

Load RDF ntriples

Loads an RDF knowledge graph serialized as ntriples, without building an RDF graph in memory. This function
should be preferred over load_from_rdf(), since it does not load the graph into an rdflib model (and it
is therefore faster by order of magnitudes). Nevertheless, it requires a ntriples serialization as in the example
below:

_:alice <http://xmlns.com/foaf/0.1/knows> _:bob .
_:bob <http://xmlns.com/foaf/0.1/knows> _:alice .

Note: It is recommended to use ampligraph.evaluation.train_test_split_no_unseen() to
split custom knowledge graphs into train, validation, and test sets. Using this function will lead to validation,
test sets that do not include triples with entities that do not occur in the training set.

Parameters

• folder_name (str) – base folder where the file is stored.

• file_name (str) – file name

• data_home (str) – The path to the folder that contains the datasets.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

Returns triples – the actual triples of the file.

Return type ndarray , shape [n, 3]

load_from_rdf

ampligraph.datasets.load_from_rdf(folder_name, file_name, rdf_format='nt', data_home=None,
add_reciprocal_rels=False)

Load an RDF file

Loads an RDF knowledge graph using rdflib APIs. Multiple RDF serialization formats are supported (nt, ttl,
rdf/xml, etc). The entire graph will be loaded in memory, and converted into an rdflib Graph object.

Warning: Large RDF graphs should be serialized to ntriples beforehand and loaded with
load_from_ntriples() instead.

Note: It is recommended to use ampligraph.evaluation.train_test_split_no_unseen() to
split custom knowledge graphs into train, validation, and test sets. Using this function will lead to validation,
test sets that do not include triples with entities that do not occur in the training set.

Parameters

• folder_name (str) – Base folder where the file is stored.

3.3. API 19

https://www.w3.org/TR/n-triples/.
https://rdflib.readthedocs.io/

AmpliGraph, Release 1.3.2

• file_name (str) – File name.

• rdf_format (str) – The RDF serialization format (nt, ttl, rdf/xml - see rdflib documen-
tation).

• data_home (str) – The path to the folder that contains the datasets.

• add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal rela-
tions. For every <s, p, o> in the dataset this creates a corresponding triple with reciprocal
relation <o, p_reciprocal, s>. (default: False).

Returns triples – the actual triples of the file.

Return type ndarray , shape [n, 3]

Hint: AmpliGraph includes a helper function to split a generic knowledge graphs into training, validation, and test
sets. See ampligraph.evaluation.train_test_split_no_unseen().

3.3.2 Models

Knowledge Graph Embedding Models

RandomBaseline([seed, verbose]) Random baseline
TransE([k, eta, epochs, batches_count, . . .]) Translating Embeddings (TransE)
DistMult([k, eta, epochs, batches_count, . . .]) The DistMult model
ComplEx([k, eta, epochs, batches_count, . . .]) Complex embeddings (ComplEx)
HolE([k, eta, epochs, batches_count, seed, . . .]) Holographic Embeddings
ConvE([k, eta, epochs, batches_count, seed, . . .]) Convolutional 2D KG Embeddings
ConvKB([k, eta, epochs, batches_count, . . .]) Convolution-based model

RandomBaseline

class ampligraph.latent_features.RandomBaseline(seed=0, verbose=False)
Random baseline

A dummy model that assigns a pseudo-random score included between 0 and 1, drawn from a uniform distribu-
tion.

The model is useful whenever you need to compare the performance of another model on a custom knowledge
graph, and no other baseline is available.

Note: Although the model still requires invoking the fit() method, no actual training will be carried out.

20 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from ampligraph.latent_features import RandomBaseline
>>> model = RandomBaseline()
>>> X = np.array([['a', 'y', 'b'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],
>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>> model.fit(X)
>>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
[0.5488135039273248, 0.7151893663724195]

Methods

__init__([seed, verbose]) Initialize the model
fit(X[, early_stopping, early_stopping_params]) Train the random model.
predict(X[, from_idx]) Predict the scores of triples using a trained embed-

ding model.
get_hyperparameter_dict() Returns hyperparameters of the model.

__init__(seed=0, verbose=False)
Initialize the model

Parameters

• seed (int) – The seed used by the internal random numbers generator.

• verbose (bool) – Verbose mode.

fit(X, early_stopping=False, early_stopping_params={})
Train the random model.

There is no actual training involved in practice and the early stopping parameters won’t have any effect.

Parameters

• X (ndarray, shape [n, 3]) – The training triples

• early_stopping (bool) – Flag to enable early stopping (default:False).

If set to True, the training loop adopts the following early stopping heuristic:

– The model will be trained regardless of early stopping for burn_in epochs.

– Every check_interval epochs the method will compute the metric specified in
criteria.

If such metric decreases for stop_interval checks, we stop training early.

Note the metric is computed on x_valid. This is usually a validation set that you held
out.

Also, because criteria is a ranking metric, it requires generating negatives. Entities
used to generate corruptions can be specified, as long as the side(s) of a triple to corrupt.

3.3. API 21

AmpliGraph, Release 1.3.2

The method supports filtered metrics, by passing an array of positives to x_filter. This
will be used to filter the negatives generated on the fly (i.e. the corruptions).

Note: Keep in mind the early stopping criteria may introduce a certain overhead (caused
by the metric computation). The goal is to strike a good trade-off between such overhead
and saving training epochs.

A common approach is to use MRR unfiltered:

early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'}

Note the size of validation set also contributes to such overhead. In most cases a smaller
validation set would be enough.

• early_stopping_params (dictionary) – Dictionary of hyperparameters for the
early stopping heuristics.

The following string keys are supported:

– ’x_valid’: ndarray, shape [n, 3] : Validation set to be used for early stopping.

– ’criteria’: string : criteria for early stopping ‘hits10’, ‘hits3’, ‘hits1’ or
‘mrr’(default).

– ’x_filter’: ndarray, shape [n, 3] : Positive triples to use as filter if a ‘filtered’ early
stopping criteria is desired (i.e. filtered-MRR if ‘criteria’:’mrr’). Note this will
affect training time (no filter by default).

– ’burn_in’: int : Number of epochs to pass before kicking in early stopping (de-
fault: 100).

– check_interval’: int : Early stopping interval after burn-in (default:10).

– ’stop_interval’: int : Stop if criteria is performing worse over n consecutive checks
(default: 3)

– ’corruption_entities’: List of entities to be used for corruptions. If ‘all’, it uses
all entities (default: ‘all’)

– ’corrupt_side’: Specifies which side to corrupt. ‘s’, ‘o’, ‘s+o’ (default)

Example: early_stopping_params={x_valid=X['valid'],
'criteria': 'mrr'}

predict(X, from_idx=False)
Predict the scores of triples using a trained embedding model. The function returns raw scores generated
by the model.

Note: To obtain probability estimates, calibrate the model with calibrate(), then call
predict_proba().

Parameters

• X (ndarray, shape [n, 3]) – The triples to score.

• from_idx (bool) – If True, will skip conversion to internal IDs. (default: False).

Returns scores_predict – The predicted scores for input triples X.

Return type ndarray, shape [n]

22 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

get_hyperparameter_dict()
Returns hyperparameters of the model.

Returns hyperparam_dict – Dictionary of hyperparameters that were used for training.

Return type dict

TransE

class ampligraph.latent_features.TransE(k=100, eta=2, epochs=100,
batches_count=100, seed=0, embed-
ding_model_params={'corrupt_sides': ['s,o'],
'negative_corruption_entities': 'all', 'norm': 1,
'normalize_ent_emb': False}, optimizer='adam',
optimizer_params={'lr': 0.0005}, loss='nll',
loss_params={}, regularizer=None, regular-
izer_params={}, initializer='xavier', initial-
izer_params={'uniform': False}, verbose=False)

Translating Embeddings (TransE)

The model as described in [BUGD+13].

The scoring function of TransE computes a similarity between the embedding of the subject e𝑠𝑢𝑏 translated by
the embedding of the predicate e𝑝𝑟𝑒𝑑 and the embedding of the object e𝑜𝑏𝑗 , using the 𝐿1 or 𝐿2 norm || · ||:

𝑓𝑇𝑟𝑎𝑛𝑠𝐸 = −||e𝑠𝑢𝑏 + e𝑝𝑟𝑒𝑑 − e𝑜𝑏𝑗 ||𝑛

Such scoring function is then used on positive and negative triples 𝑡+, 𝑡− in the loss function.

Examples

>>> import numpy as np
>>> from ampligraph.latent_features import TransE
>>> model = TransE(batches_count=1, seed=555, epochs=20, k=10, loss='pairwise',
>>> loss_params={'margin':5})
>>> X = np.array([['a', 'y', 'b'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],
>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>> model.fit(X)
>>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
[-4.6903257, -3.9047198]
>>> model.get_embeddings(['f','e'], embedding_type='entity')
array([[0.10673896, -0.28916815, 0.6278883 , -0.1194713 , -0.10372276,
-0.37258488, 0.06460134, -0.27879423, 0.25456288, 0.18665907],
[-0.64494324, -0.12939683, 0.3181001 , 0.16745451, -0.03766293,
0.24314676, -0.23038973, -0.658638 , 0.5680542 , -0.05401703]],

dtype=float32)

3.3. API 23

AmpliGraph, Release 1.3.2

Methods

__init__([k, eta, epochs, batches_count, . . .]) Initialize an EmbeddingModel.
fit(X[, early_stopping, early_stopping_params]) Train an Translating Embeddings model.
get_embeddings(entities[, embedding_type]) Get the embeddings of entities or relations.
get_hyperparameter_dict() Returns hyperparameters of the model.
predict(X[, from_idx]) Predict the scores of triples using a trained embed-

ding model.
calibrate(X_pos[, X_neg, . . .]) Calibrate predictions
predict_proba(X) Predicts probabilities using the Platt scaling model

(after calibration).

__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-
ding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm':
1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005},
loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier',
initializer_params={'uniform': False}, verbose=False)

Initialize an EmbeddingModel.

Also creates a new Tensorflow session for training.

Parameters

• k (int) – Embedding space dimensionality.

• eta (int) – The number of negatives that must be generated at runtime during train-
ing for each positive.

• epochs (int) – The iterations of the training loop.

• batches_count (int) – The number of batches in which the training set must be
split during the training loop.

• seed (int) – The seed used by the internal random numbers generator.

• embedding_model_params (dict) – TransE-specific hyperparams, passed to
the model as a dictionary.

Supported keys:

– ’norm’ (int): the norm to be used in the scoring function (1 or 2-norm - default: 1).

– ’normalize_ent_emb’ (bool): flag to indicate whether to normalize entity embed-
dings after each batch update (default: False).

– negative_corruption_entities : entities to be used for generation of corruptions
while training. It can take the following values : all (default: all entities), batch
(entities present in each batch), list of entities or an int (which indicates how many
entities that should be used for corruption generation).

– corrupt_sides : Specifies how to generate corruptions for training. Takes values s,
o, s+o or any combination passed as a list.

Example: embedding_model_params={'norm': 1,
'normalize_ent_emb': False}

• optimizer (string) – The optimizer used to minimize the loss function. Choose
between ‘sgd’, ‘adagrad’, ‘adam’, ‘momentum’.

• optimizer_params (dict) – Arguments specific to the optimizer, passed as a
dictionary.

24 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Supported keys:

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

Example: optimizer_params={'lr': 0.01}

• loss (string) – The type of loss function to use during training.

– pairwise the model will use pairwise margin-based loss function.

– nll the model will use negative loss likelihood.

– absolute_margin the model will use absolute margin likelihood.

– self_adversarial the model will use adversarial sampling loss function.

– multiclass_nll the model will use multiclass nll loss. Switch to multi-
class loss defined in [aC15] by passing ‘corrupt_sides’ as [‘s’,’o’] to embed-
ding_model_params. To use loss defined in [KBK17] pass ‘corrupt_sides’ as ‘o’ to
embedding_model_params.

• loss_params (dict) – Dictionary of loss-specific hyperparameters. See loss func-
tions documentation for additional details.

Example: optimizer_params={'lr': 0.01} if loss='pairwise'.

• regularizer (string) – The regularization strategy to use with the loss func-
tion.

– None: the model will not use any regularizer (default)

– ’LP’: the model will use L1, L2 or L3 based on the value of
regularizer_params['p'] (see below).

• regularizer_params (dict) – Dictionary of regularizer-specific hyperparam-
eters. See the regularizers documentation for additional details.

Example: regularizer_params={'lambda': 1e-5, 'p': 2} if
regularizer='LP'.

• initializer (string) – The type of initializer to use.

– normal: The embeddings will be initialized from a normal distribution

– uniform: The embeddings will be initialized from a uniform distribution

– xavier: The embeddings will be initialized using xavier strategy (default)

• initializer_params (dict) – Dictionary of initializer-specific hyperparame-
ters. See the initializer documentation for additional details.

Example: initializer_params={'mean': 0, 'std': 0.001} if
initializer='normal'.

verbose [bool] Verbose mode

fit(X, early_stopping=False, early_stopping_params={})
Train an Translating Embeddings model.

The model is trained on a training set X using the training protocol described in [TWR+16].

Parameters

3.3. API 25

AmpliGraph, Release 1.3.2

• X (ndarray, shape [n, 3]) – The training triples

• early_stopping (bool) – Flag to enable early stopping (default:False).

If set to True, the training loop adopts the following early stopping heuristic:

– The model will be trained regardless of early stopping for burn_in epochs.

– Every check_interval epochs the method will compute the metric specified
in criteria.

If such metric decreases for stop_interval checks, we stop training early.

Note the metric is computed on x_valid. This is usually a validation set that you
held out.

Also, because criteria is a ranking metric, it requires generating negatives. En-
tities used to generate corruptions can be specified, as long as the side(s) of a triple
to corrupt. The method supports filtered metrics, by passing an array of positives to
x_filter. This will be used to filter the negatives generated on the fly (i.e. the
corruptions).

Note: Keep in mind the early stopping criteria may introduce a certain overhead
(caused by the metric computation). The goal is to strike a good trade-off between
such overhead and saving training epochs.

A common approach is to use MRR unfiltered:

early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'}

Note the size of validation set also contributes to such overhead. In most cases a
smaller validation set would be enough.

• early_stopping_params (dictionary) – Dictionary of hyperparameters for
the early stopping heuristics.

The following string keys are supported:

– ’x_valid’: ndarray, shape [n, 3] : Validation set to be used for early stopping.

– ’criteria’: string : criteria for early stopping ‘hits10’, ‘hits3’, ‘hits1’ or
‘mrr’(default).

– ’x_filter’: ndarray, shape [n, 3] : Positive triples to use as filter if a ‘filtered’
early stopping criteria is desired (i.e. filtered-MRR if ‘criteria’:’mrr’). Note
this will affect training time (no filter by default).

– ’burn_in’: int : Number of epochs to pass before kicking in early stopping
(default: 100).

– check_interval’: int : Early stopping interval after burn-in (default:10).

– ’stop_interval’: int : Stop if criteria is performing worse over n consecutive
checks (default: 3)

– ’corruption_entities’: List of entities to be used for corruptions. If ‘all’, it
uses all entities (default: ‘all’)

– ’corrupt_side’: Specifies which side to corrupt. ‘s’, ‘o’, ‘s+o’ (default)

Example: early_stopping_params={x_valid=X['valid'],
'criteria': 'mrr'}

26 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

get_embeddings(entities, embedding_type='entity')
Get the embeddings of entities or relations.

Note: Use ampligraph.utils.create_tensorboard_visualizations() to visualize the
embeddings with TensorBoard.

Parameters

• entities (array-like, dtype=int, shape=[n]) – The entities (or rela-
tions) of interest. Element of the vector must be the original string literals, and not
internal IDs.

• embedding_type (string) – If ‘entity’, entities argument will be consid-
ered as a list of knowledge graph entities (i.e. nodes). If set to ‘relation’, they will be
treated as relation types instead (i.e. predicates).

Returns embeddings – An array of k-dimensional embeddings.

Return type ndarray, shape [n, k]

get_hyperparameter_dict()
Returns hyperparameters of the model.

Returns hyperparam_dict – Dictionary of hyperparameters that were used for training.

Return type dict

predict(X, from_idx=False)
Predict the scores of triples using a trained embedding model. The function returns raw scores generated
by the model.

Note: To obtain probability estimates, calibrate the model with calibrate(), then call
predict_proba().

Parameters

• X (ndarray, shape [n, 3]) – The triples to score.

• from_idx (bool) – If True, will skip conversion to internal IDs. (default: False).

Returns scores_predict – The predicted scores for input triples X.

Return type ndarray, shape [n]

calibrate(X_pos, X_neg=None, positive_base_rate=None, batches_count=100, epochs=50)
Calibrate predictions

The method implements the heuristics described in [TC20], using Platt scaling [P+99].

The calibrated predictions can be obtained with predict_proba() after calibration is done.

Ideally, calibration should be performed on a validation set that was not used to train the embeddings.

There are two modes of operation, depending on the availability of negative triples:

1. Both positive and negative triples are provided via X_pos and X_neg respectively. The optimiza-
tion is done using a second-order method (limited-memory BFGS), therefore no hyperparameter
needs to be specified.

3.3. API 27

AmpliGraph, Release 1.3.2

2. Only positive triples are provided, and the negative triples are generated by corruptions just like
it is done in training or evaluation. The optimization is done using a first-order method (ADAM),
therefore batches_count and epochs must be specified.

Calibration is highly dependent on the base rate of positive triples. Therefore, for mode (2) of operation,
the user is required to provide the positive_base_rate argument. For mode (1), that can be inferred
automatically by the relative sizes of the positive and negative sets, but the user can override that by
providing a value to positive_base_rate.

Defining the positive base rate is the biggest challenge when calibrating without negatives. That depends
on the user choice of which triples will be evaluated during test time. Let’s take WN11 as an example: it
has around 50% positives triples on both the validation set and test set, so naturally the positive base rate is
50%. However, should the user resample it to have 75% positives and 25% negatives, its previous calibra-
tion will be degraded. The user must recalibrate the model now with a 75% positive base rate. Therefore,
this parameter depends on how the user handles the dataset and cannot be determined automatically or a
priori.

Note: Incompatible with large graph mode (i.e. if self.dealing_with_large_graphs=True).

Note: [TC20] calibration experiments available here.

Parameters

• X_pos (ndarray (shape [n, 3])) – Numpy array of positive triples.

• X_neg (ndarray (shape [n, 3])) – Numpy array of negative triples.

If None, the negative triples are generated via corruptions and the user must provide
a positive base rate instead.

• positive_base_rate (float) – Base rate of positive statements.

For example, if we assume there is a fifty-fifty chance of any query to be true, the base
rate would be 50%.

If X_neg is provided and this is None, the relative sizes of X_pos and X_neg will
be used to determine the base rate. For example, if we have 50 positive triples and
200 negative triples, the positive base rate will be assumed to be 50/(50+200) = 1/5 =
0.2.

This must be a value between 0 and 1.

• batches_count (int) – Number of batches to complete one epoch of the Platt
scaling training. Only applies when X_neg is None.

• epochs (int) – Number of epochs used to train the Platt scaling model. Only
applies when X_neg is None.

28 Chapter 3. How to Cite

https://github.com/Accenture/AmpliGraph/tree/paper/ICLR-20/experiments/ICLR-20

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss, log_loss
>>> from scipy.special import expit
>>>
>>> from ampligraph.datasets import load_wn11
>>> from ampligraph.latent_features.models import TransE
>>>
>>> X = load_wn11()
>>> X_valid_pos = X['valid'][X['valid_labels']]
>>> X_valid_neg = X['valid'][~X['valid_labels']]
>>>
>>> model = TransE(batches_count=64, seed=0, epochs=500, k=100, eta=20,
>>> optimizer='adam', optimizer_params={'lr':0.0001},
>>> loss='pairwise', verbose=True)
>>>
>>> model.fit(X['train'])
>>>
>>> # Raw scores
>>> scores = model.predict(X['test'])
>>>
>>> # Calibrate with positives and negatives
>>> model.calibrate(X_valid_pos, X_valid_neg, positive_base_rate=None)
>>> probas_pos_neg = model.predict_proba(X['test'])
>>>
>>> # Calibrate with just positives and base rate of 50%
>>> model.calibrate(X_valid_pos, positive_base_rate=0.5)
>>> probas_pos = model.predict_proba(X['test'])
>>>
>>> # Calibration evaluation with the Brier score loss (the smaller, the
→˓better)
>>> print("Brier scores")
>>> print("Raw scores:", brier_score_loss(X['test_labels'], expit(scores)))
>>> print("Positive and negative calibration:", brier_score_loss(X['test_
→˓labels'], probas_pos_neg))
>>> print("Positive only calibration:", brier_score_loss(X['test_labels'],
→˓probas_pos))
Brier scores
Raw scores: 0.4925058891371126
Positive and negative calibration: 0.20434617882733366
Positive only calibration: 0.22597599585144656

predict_proba(X)
Predicts probabilities using the Platt scaling model (after calibration).

Model must be calibrated beforehand with the calibrate method.

Parameters X (ndarray (shape [n, 3])) – Numpy array of triples to be evaluated.

Returns probas – Probability of each triple to be true according to the Platt scaling calibra-
tion.

Return type ndarray (shape [n])

3.3. API 29

AmpliGraph, Release 1.3.2

DistMult

class ampligraph.latent_features.DistMult(k=100, eta=2, epochs=100,
batches_count=100, seed=0, embed-
ding_model_params={'corrupt_sides': ['s,o'],
'negative_corruption_entities': 'all', 'nor-
malize_ent_emb': False}, optimizer='adam',
optimizer_params={'lr': 0.0005}, loss='nll',
loss_params={}, regularizer=None, reg-
ularizer_params={}, initializer='xavier',
initializer_params={'uniform': False}, ver-
bose=False)

The DistMult model

The model as described in [YYH+14].

The bilinear diagonal DistMult model uses the trilinear dot product as scoring function:

𝑓𝐷𝑖𝑠𝑡𝑀𝑢𝑙𝑡 = ⟨r𝑝, e𝑠, e𝑜⟩

where e𝑠 is the embedding of the subject, r𝑝 the embedding of the predicate and e𝑜 the embedding of the object.

Examples

>>> import numpy as np
>>> from ampligraph.latent_features import DistMult
>>> model = DistMult(batches_count=1, seed=555, epochs=20, k=10, loss='pairwise',
>>> loss_params={'margin':5})
>>> X = np.array([['a', 'y', 'b'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],
>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>> model.fit(X)
>>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
[-0.13863425, -0.09917116]
>>> model.get_embeddings(['f','e'], embedding_type='entity')
array([[0.10137264, -0.28248304, 0.6153027 , -0.13133956, -0.11675504,
-0.37876177, 0.06027773, -0.26390398, 0.254603 , 0.1888549],
[-0.6467299 , -0.13729756, 0.3074872 , 0.16966867, -0.04098966,
0.25289047, -0.2212451 , -0.6527815 , 0.5657673 , -0.03876532]],

dtype=float32)

30 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Methods

__init__([k, eta, epochs, batches_count, . . .]) Initialize an EmbeddingModel
fit(X[, early_stopping, early_stopping_params]) Train an DistMult.
get_embeddings(entities[, embedding_type]) Get the embeddings of entities or relations.
get_hyperparameter_dict() Returns hyperparameters of the model.
predict(X[, from_idx]) Predict the scores of triples using a trained embed-

ding model.
calibrate(X_pos[, X_neg, . . .]) Calibrate predictions
predict_proba(X) Predicts probabilities using the Platt scaling model

(after calibration).

__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-
ding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all',
'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005},
loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier',
initializer_params={'uniform': False}, verbose=False)

Initialize an EmbeddingModel

Also creates a new Tensorflow session for training.

Parameters

• k (int) – Embedding space dimensionality

• eta (int) – The number of negatives that must be generated at runtime during train-
ing for each positive.

• epochs (int) – The iterations of the training loop.

• batches_count (int) – The number of batches in which the training set must be
split during the training loop.

• seed (int) – The seed used by the internal random numbers generator.

• embedding_model_params (dict) – DistMult-specific hyperparams, passed to
the model as a dictionary.

Supported keys:

– ’normalize_ent_emb’ (bool): flag to indicate whether to normalize entity embed-
dings after each batch update (default: False).

– ’negative_corruption_entities’ - Entities to be used for generation of corruptions
while training. It can take the following values : all (default: all entities), batch
(entities present in each batch), list of entities or an int (which indicates how many
entities that should be used for corruption generation).

– corrupt_sides : Specifies how to generate corruptions for training. Takes values s,
o, s+o or any combination passed as a list

Example: embedding_model_params={'normalize_ent_emb':
False}

• optimizer (string) – The optimizer used to minimize the loss function. Choose
between ‘sgd’, ‘adagrad’, ‘adam’, ‘momentum’.

• optimizer_params (dict) – Arguments specific to the optimizer, passed as a
dictionary.

Supported keys:

3.3. API 31

AmpliGraph, Release 1.3.2

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

Example: optimizer_params={'lr': 0.01}

• loss (string) – The type of loss function to use during training.

– pairwise the model will use pairwise margin-based loss function.

– nll the model will use negative loss likelihood.

– absolute_margin the model will use absolute margin likelihood.

– self_adversarial the model will use adversarial sampling loss function.

– multiclass_nll the model will use multiclass nll loss. Switch to multi-
class loss defined in [aC15] by passing ‘corrupt_sides’ as [‘s’,’o’] to embed-
ding_model_params. To use loss defined in [KBK17] pass ‘corrupt_sides’ as ‘o’ to
embedding_model_params.

• loss_params (dict) – Dictionary of loss-specific hyperparameters. See loss func-
tions documentation for additional details.

Example: optimizer_params={'lr': 0.01} if loss='pairwise'.

• regularizer (string) – The regularization strategy to use with the loss func-
tion.

– None: the model will not use any regularizer (default)

– ’LP’: the model will use L1, L2 or L3 based on the value of
regularizer_params['p'] (see below).

• regularizer_params (dict) – Dictionary of regularizer-specific hyperparam-
eters. See the regularizers documentation for additional details.

Example: regularizer_params={'lambda': 1e-5, 'p': 2} if
regularizer='LP'.

• initializer (string) – The type of initializer to use.

– normal: The embeddings will be initialized from a normal distribution

– uniform: The embeddings will be initialized from a uniform distribution

– xavier: The embeddings will be initialized using xavier strategy (default)

• initializer_params (dict) – Dictionary of initializer-specific hyperparame-
ters. See the initializer documentation for additional details.

Example: initializer_params={'mean': 0, 'std': 0.001} if
initializer='normal'.

• verbose (bool) – Verbose mode.

fit(X, early_stopping=False, early_stopping_params={})
Train an DistMult.

The model is trained on a training set X using the training protocol described in [TWR+16].

Parameters

• X (ndarray, shape [n, 3]) – The training triples

32 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• early_stopping (bool) – Flag to enable early stopping (default:False).

If set to True, the training loop adopts the following early stopping heuristic:

– The model will be trained regardless of early stopping for burn_in epochs.

– Every check_interval epochs the method will compute the metric specified
in criteria.

If such metric decreases for stop_interval checks, we stop training early.

Note the metric is computed on x_valid. This is usually a validation set that you
held out.

Also, because criteria is a ranking metric, it requires generating negatives. En-
tities used to generate corruptions can be specified, as long as the side(s) of a triple
to corrupt. The method supports filtered metrics, by passing an array of positives to
x_filter. This will be used to filter the negatives generated on the fly (i.e. the
corruptions).

Note: Keep in mind the early stopping criteria may introduce a certain overhead
(caused by the metric computation). The goal is to strike a good trade-off between
such overhead and saving training epochs.

A common approach is to use MRR unfiltered:

early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'}

Note the size of validation set also contributes to such overhead. In most cases a
smaller validation set would be enough.

• early_stopping_params (dictionary) – Dictionary of hyperparameters for
the early stopping heuristics.

The following string keys are supported:

– ’x_valid’: ndarray, shape [n, 3] : Validation set to be used for early stopping.

– ’criteria’: string : criteria for early stopping ‘hits10’, ‘hits3’, ‘hits1’ or
‘mrr’(default).

– ’x_filter’: ndarray, shape [n, 3] : Positive triples to use as filter if a ‘filtered’
early stopping criteria is desired (i.e. filtered-MRR if ‘criteria’:’mrr’). Note
this will affect training time (no filter by default).

– ’burn_in’: int : Number of epochs to pass before kicking in early stopping
(default: 100).

– check_interval’: int : Early stopping interval after burn-in (default:10).

– ’stop_interval’: int : Stop if criteria is performing worse over n consecutive
checks (default: 3)

– ’corruption_entities’: List of entities to be used for corruptions. If ‘all’, it
uses all entities (default: ‘all’)

– ’corrupt_side’: Specifies which side to corrupt. ‘s’, ‘o’, ‘s+o’ (default)

Example: early_stopping_params={x_valid=X['valid'],
'criteria': 'mrr'}

3.3. API 33

AmpliGraph, Release 1.3.2

get_embeddings(entities, embedding_type='entity')
Get the embeddings of entities or relations.

Note: Use ampligraph.utils.create_tensorboard_visualizations() to visualize the
embeddings with TensorBoard.

Parameters

• entities (array-like, dtype=int, shape=[n]) – The entities (or rela-
tions) of interest. Element of the vector must be the original string literals, and not
internal IDs.

• embedding_type (string) – If ‘entity’, entities argument will be consid-
ered as a list of knowledge graph entities (i.e. nodes). If set to ‘relation’, they will be
treated as relation types instead (i.e. predicates).

Returns embeddings – An array of k-dimensional embeddings.

Return type ndarray, shape [n, k]

get_hyperparameter_dict()
Returns hyperparameters of the model.

Returns hyperparam_dict – Dictionary of hyperparameters that were used for training.

Return type dict

predict(X, from_idx=False)
Predict the scores of triples using a trained embedding model. The function returns raw scores generated
by the model.

Note: To obtain probability estimates, calibrate the model with calibrate(), then call
predict_proba().

Parameters

• X (ndarray, shape [n, 3]) – The triples to score.

• from_idx (bool) – If True, will skip conversion to internal IDs. (default: False).

Returns scores_predict – The predicted scores for input triples X.

Return type ndarray, shape [n]

calibrate(X_pos, X_neg=None, positive_base_rate=None, batches_count=100, epochs=50)
Calibrate predictions

The method implements the heuristics described in [TC20], using Platt scaling [P+99].

The calibrated predictions can be obtained with predict_proba() after calibration is done.

Ideally, calibration should be performed on a validation set that was not used to train the embeddings.

There are two modes of operation, depending on the availability of negative triples:

1. Both positive and negative triples are provided via X_pos and X_neg respectively. The optimiza-
tion is done using a second-order method (limited-memory BFGS), therefore no hyperparameter
needs to be specified.

34 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

2. Only positive triples are provided, and the negative triples are generated by corruptions just like
it is done in training or evaluation. The optimization is done using a first-order method (ADAM),
therefore batches_count and epochs must be specified.

Calibration is highly dependent on the base rate of positive triples. Therefore, for mode (2) of operation,
the user is required to provide the positive_base_rate argument. For mode (1), that can be inferred
automatically by the relative sizes of the positive and negative sets, but the user can override that by
providing a value to positive_base_rate.

Defining the positive base rate is the biggest challenge when calibrating without negatives. That depends
on the user choice of which triples will be evaluated during test time. Let’s take WN11 as an example: it
has around 50% positives triples on both the validation set and test set, so naturally the positive base rate is
50%. However, should the user resample it to have 75% positives and 25% negatives, its previous calibra-
tion will be degraded. The user must recalibrate the model now with a 75% positive base rate. Therefore,
this parameter depends on how the user handles the dataset and cannot be determined automatically or a
priori.

Note: Incompatible with large graph mode (i.e. if self.dealing_with_large_graphs=True).

Note: [TC20] calibration experiments available here.

Parameters

• X_pos (ndarray (shape [n, 3])) – Numpy array of positive triples.

• X_neg (ndarray (shape [n, 3])) – Numpy array of negative triples.

If None, the negative triples are generated via corruptions and the user must provide
a positive base rate instead.

• positive_base_rate (float) – Base rate of positive statements.

For example, if we assume there is a fifty-fifty chance of any query to be true, the base
rate would be 50%.

If X_neg is provided and this is None, the relative sizes of X_pos and X_neg will
be used to determine the base rate. For example, if we have 50 positive triples and
200 negative triples, the positive base rate will be assumed to be 50/(50+200) = 1/5 =
0.2.

This must be a value between 0 and 1.

• batches_count (int) – Number of batches to complete one epoch of the Platt
scaling training. Only applies when X_neg is None.

• epochs (int) – Number of epochs used to train the Platt scaling model. Only
applies when X_neg is None.

3.3. API 35

https://github.com/Accenture/AmpliGraph/tree/paper/ICLR-20/experiments/ICLR-20

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss, log_loss
>>> from scipy.special import expit
>>>
>>> from ampligraph.datasets import load_wn11
>>> from ampligraph.latent_features.models import TransE
>>>
>>> X = load_wn11()
>>> X_valid_pos = X['valid'][X['valid_labels']]
>>> X_valid_neg = X['valid'][~X['valid_labels']]
>>>
>>> model = TransE(batches_count=64, seed=0, epochs=500, k=100, eta=20,
>>> optimizer='adam', optimizer_params={'lr':0.0001},
>>> loss='pairwise', verbose=True)
>>>
>>> model.fit(X['train'])
>>>
>>> # Raw scores
>>> scores = model.predict(X['test'])
>>>
>>> # Calibrate with positives and negatives
>>> model.calibrate(X_valid_pos, X_valid_neg, positive_base_rate=None)
>>> probas_pos_neg = model.predict_proba(X['test'])
>>>
>>> # Calibrate with just positives and base rate of 50%
>>> model.calibrate(X_valid_pos, positive_base_rate=0.5)
>>> probas_pos = model.predict_proba(X['test'])
>>>
>>> # Calibration evaluation with the Brier score loss (the smaller, the
→˓better)
>>> print("Brier scores")
>>> print("Raw scores:", brier_score_loss(X['test_labels'], expit(scores)))
>>> print("Positive and negative calibration:", brier_score_loss(X['test_
→˓labels'], probas_pos_neg))
>>> print("Positive only calibration:", brier_score_loss(X['test_labels'],
→˓probas_pos))
Brier scores
Raw scores: 0.4925058891371126
Positive and negative calibration: 0.20434617882733366
Positive only calibration: 0.22597599585144656

predict_proba(X)
Predicts probabilities using the Platt scaling model (after calibration).

Model must be calibrated beforehand with the calibrate method.

Parameters X (ndarray (shape [n, 3])) – Numpy array of triples to be evaluated.

Returns probas – Probability of each triple to be true according to the Platt scaling calibra-
tion.

Return type ndarray (shape [n])

36 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

ComplEx

class ampligraph.latent_features.ComplEx(k=100, eta=2, epochs=100,
batches_count=100, seed=0, embed-
ding_model_params={'corrupt_sides': ['s,o'],
'negative_corruption_entities': 'all'}, opti-
mizer='adam', optimizer_params={'lr': 0.0005},
loss='nll', loss_params={}, regularizer=None,
regularizer_params={}, initializer='xavier',
initializer_params={'uniform': False}, ver-
bose=False)

Complex embeddings (ComplEx)

The ComplEx model [TWR+16] is an extension of the ampligraph.latent_features.DistMult bi-
linear diagonal model . ComplEx scoring function is based on the trilinear Hermitian dot product in 𝒞:

𝑓𝐶𝑜𝑚𝑝𝑙𝐸𝑥 = 𝑅𝑒(⟨r𝑝, e𝑠, e𝑜⟩)

ComplEx can be improved if used alongside the nuclear 3-norm (the ComplEx-N3 model [LUO18]), which
can be easily added to the loss function via the regularizer hyperparameter with p=3 and a chosen
regularisation weight (represented by lambda), as shown in the example below. See also ampligraph.
latent_features.LPRegularizer().

Note: Since ComplEx embeddings belong to 𝒞, this model uses twice as many parameters as ampligraph.
latent_features.DistMult.

Examples

>>> import numpy as np
>>> from ampligraph.latent_features import ComplEx
>>>
>>> model = ComplEx(batches_count=2, seed=555, epochs=100, k=20, eta=5,
>>> loss='pairwise', loss_params={'margin':1},
>>> regularizer='LP', regularizer_params={'p': 2, 'lambda':0.1})
>>> X = np.array([['a', 'y', 'b'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],
>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>> model.fit(X)
>>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
[[0.019520484], [-0.14998421]]
>>> model.get_embeddings(['f','e'], embedding_type='entity')
array([[-0.33021057, 0.26524785, 0.0446662 , -0.07932718, -0.15453218,

-0.22342539, -0.03382565, 0.17444217, 0.03009969, -0.33569157,
0.3200497 , 0.03803705, 0.05536304, -0.00929996, 0.24446663,
0.34408194, 0.16192885, -0.15033236, -0.19703785, -0.00783876,
0.1495124 , -0.3578853 , -0.04975723, -0.03930473, 0.1663541 ,

-0.24731971, -0.141296 , 0.03150219, 0.15328223, -0.18549544,
-0.39240393, -0.10824018, 0.03394471, -0.11075485, 0.1367736 ,
0.10059565, -0.32808647, -0.00472086, 0.14231135, -0.13876757],

(continues on next page)

3.3. API 37

AmpliGraph, Release 1.3.2

(continued from previous page)

[-0.09483694, 0.3531292 , 0.04992269, -0.07774793, 0.1635035 ,
0.30610007, 0.3666711 , -0.13785957, -0.3143734 , -0.36909637,

-0.13792469, -0.07069954, -0.0368113 , -0.16743314, 0.4090072 ,
-0.03407392, 0.3113114 , -0.08418448, 0.21435146, 0.12006859,
0.08447982, -0.02025972, 0.38752195, 0.11451488, -0.0258422 ,

-0.10990044, -0.22661531, -0.00478273, -0.0238297 , -0.14207476,
0.11064807, 0.20135397, 0.22501846, -0.1731076 , -0.2770435 ,
0.30784574, -0.15043163, -0.11599299, 0.05718031, -0.1300622]],

dtype=float32)

Methods

__init__([k, eta, epochs, batches_count, . . .]) Initialize an EmbeddingModel
fit(X[, early_stopping, early_stopping_params]) Train a ComplEx model.
get_embeddings(entities[, embedding_type]) Get the embeddings of entities or relations.
get_hyperparameter_dict() Returns hyperparameters of the model.
predict(X[, from_idx]) Predict the scores of triples using a trained embed-

ding model.
calibrate(X_pos[, X_neg, . . .]) Calibrate predictions
predict_proba(X) Predicts probabilities using the Platt scaling model

(after calibration).

__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-
ding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all'},
optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regular-
izer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform':
False}, verbose=False)

Initialize an EmbeddingModel

Also creates a new Tensorflow session for training.

Parameters

• k (int) – Embedding space dimensionality

• eta (int) – The number of negatives that must be generated at runtime during train-
ing for each positive.

• epochs (int) – The iterations of the training loop.

• batches_count (int) – The number of batches in which the training set must be
split during the training loop.

• seed (int) – The seed used by the internal random numbers generator.

• embedding_model_params (dict) – ComplEx-specific hyperparams:

– ’negative_corruption_entities’ - Entities to be used for generation of corruptions
while training. It can take the following values : all (default: all entities), batch
(entities present in each batch), list of entities or an int (which indicates how many
entities that should be used for corruption generation).

– corrupt_sides : Specifies how to generate corruptions for training. Takes values s,
o, s+o or any combination passed as a list

• optimizer (string) – The optimizer used to minimize the loss function. Choose
between ‘sgd’, ‘adagrad’, ‘adam’, ‘momentum’.

38 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• optimizer_params (dict) – Arguments specific to the optimizer, passed as a
dictionary.

Supported keys:

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

Example: optimizer_params={'lr': 0.01}

• loss (string) – The type of loss function to use during training.

– pairwise the model will use pairwise margin-based loss function.

– nll the model will use negative loss likelihood.

– absolute_margin the model will use absolute margin likelihood.

– self_adversarial the model will use adversarial sampling loss function.

– multiclass_nll the model will use multiclass nll loss. Switch to multi-
class loss defined in [aC15] by passing ‘corrupt_sides’ as [‘s’,’o’] to embed-
ding_model_params. To use loss defined in [KBK17] pass ‘corrupt_sides’ as ‘o’ to
embedding_model_params.

• loss_params (dict) – Dictionary of loss-specific hyperparameters. See loss func-
tions documentation for additional details.

Example: optimizer_params={'lr': 0.01} if loss='pairwise'.

• regularizer (string) – The regularization strategy to use with the loss func-
tion.

– None: the model will not use any regularizer (default)

– ’LP’: the model will use L1, L2 or L3 based on the value of
regularizer_params['p'] (see below).

• regularizer_params (dict) – Dictionary of regularizer-specific hyperparam-
eters. See the regularizers documentation for additional details.

Example: regularizer_params={'lambda': 1e-5, 'p': 2} if
regularizer='LP'.

• initializer (string) – The type of initializer to use.

– normal: The embeddings will be initialized from a normal distribution

– uniform: The embeddings will be initialized from a uniform distribution

– xavier: The embeddings will be initialized using xavier strategy (default)

• initializer_params (dict) – Dictionary of initializer-specific hyperparame-
ters. See the initializer documentation for additional details.

Example: initializer_params={'mean': 0, 'std': 0.001} if
initializer='normal'.

• verbose (bool) – Verbose mode.

fit(X, early_stopping=False, early_stopping_params={})
Train a ComplEx model.

The model is trained on a training set X using the training protocol described in [TWR+16].

3.3. API 39

AmpliGraph, Release 1.3.2

Parameters

• X (ndarray, shape [n, 3]) – The training triples

• early_stopping (bool) – Flag to enable early stopping (default:False).

If set to True, the training loop adopts the following early stopping heuristic:

– The model will be trained regardless of early stopping for burn_in epochs.

– Every check_interval epochs the method will compute the metric specified
in criteria.

If such metric decreases for stop_interval checks, we stop training early.

Note the metric is computed on x_valid. This is usually a validation set that you
held out.

Also, because criteria is a ranking metric, it requires generating negatives. En-
tities used to generate corruptions can be specified, as long as the side(s) of a triple
to corrupt. The method supports filtered metrics, by passing an array of positives to
x_filter. This will be used to filter the negatives generated on the fly (i.e. the
corruptions).

Note: Keep in mind the early stopping criteria may introduce a certain overhead
(caused by the metric computation). The goal is to strike a good trade-off between
such overhead and saving training epochs.

A common approach is to use MRR unfiltered:

early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'}

Note the size of validation set also contributes to such overhead. In most cases a
smaller validation set would be enough.

• early_stopping_params (dictionary) – Dictionary of hyperparameters for
the early stopping heuristics.

The following string keys are supported:

– ’x_valid’: ndarray, shape [n, 3] : Validation set to be used for early stopping.

– ’criteria’: string : criteria for early stopping ‘hits10’, ‘hits3’, ‘hits1’ or
‘mrr’(default).

– ’x_filter’: ndarray, shape [n, 3] : Positive triples to use as filter if a ‘filtered’
early stopping criteria is desired (i.e. filtered-MRR if ‘criteria’:’mrr’). Note
this will affect training time (no filter by default).

– ’burn_in’: int : Number of epochs to pass before kicking in early stopping
(default: 100).

– check_interval’: int : Early stopping interval after burn-in (default:10).

– ’stop_interval’: int : Stop if criteria is performing worse over n consecutive
checks (default: 3)

– ’corruption_entities’: List of entities to be used for corruptions. If ‘all’, it
uses all entities (default: ‘all’)

– ’corrupt_side’: Specifies which side to corrupt. ‘s’, ‘o’, ‘s+o’ (default)

40 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Example: early_stopping_params={x_valid=X['valid'],
'criteria': 'mrr'}

get_embeddings(entities, embedding_type='entity')
Get the embeddings of entities or relations.

Note: Use ampligraph.utils.create_tensorboard_visualizations() to visualize the
embeddings with TensorBoard.

Parameters

• entities (array-like, dtype=int, shape=[n]) – The entities (or rela-
tions) of interest. Element of the vector must be the original string literals, and not
internal IDs.

• embedding_type (string) – If ‘entity’, entities argument will be consid-
ered as a list of knowledge graph entities (i.e. nodes). If set to ‘relation’, they will be
treated as relation types instead (i.e. predicates).

Returns embeddings – An array of k-dimensional embeddings.

Return type ndarray, shape [n, k]

get_hyperparameter_dict()
Returns hyperparameters of the model.

Returns hyperparam_dict – Dictionary of hyperparameters that were used for training.

Return type dict

predict(X, from_idx=False)
Predict the scores of triples using a trained embedding model. The function returns raw scores generated
by the model.

Note: To obtain probability estimates, calibrate the model with calibrate(), then call
predict_proba().

Parameters

• X (ndarray, shape [n, 3]) – The triples to score.

• from_idx (bool) – If True, will skip conversion to internal IDs. (default: False).

Returns scores_predict – The predicted scores for input triples X.

Return type ndarray, shape [n]

calibrate(X_pos, X_neg=None, positive_base_rate=None, batches_count=100, epochs=50)
Calibrate predictions

The method implements the heuristics described in [TC20], using Platt scaling [P+99].

The calibrated predictions can be obtained with predict_proba() after calibration is done.

Ideally, calibration should be performed on a validation set that was not used to train the embeddings.

There are two modes of operation, depending on the availability of negative triples:

3.3. API 41

AmpliGraph, Release 1.3.2

1. Both positive and negative triples are provided via X_pos and X_neg respectively. The optimiza-
tion is done using a second-order method (limited-memory BFGS), therefore no hyperparameter
needs to be specified.

2. Only positive triples are provided, and the negative triples are generated by corruptions just like
it is done in training or evaluation. The optimization is done using a first-order method (ADAM),
therefore batches_count and epochs must be specified.

Calibration is highly dependent on the base rate of positive triples. Therefore, for mode (2) of operation,
the user is required to provide the positive_base_rate argument. For mode (1), that can be inferred
automatically by the relative sizes of the positive and negative sets, but the user can override that by
providing a value to positive_base_rate.

Defining the positive base rate is the biggest challenge when calibrating without negatives. That depends
on the user choice of which triples will be evaluated during test time. Let’s take WN11 as an example: it
has around 50% positives triples on both the validation set and test set, so naturally the positive base rate is
50%. However, should the user resample it to have 75% positives and 25% negatives, its previous calibra-
tion will be degraded. The user must recalibrate the model now with a 75% positive base rate. Therefore,
this parameter depends on how the user handles the dataset and cannot be determined automatically or a
priori.

Note: Incompatible with large graph mode (i.e. if self.dealing_with_large_graphs=True).

Note: [TC20] calibration experiments available here.

Parameters

• X_pos (ndarray (shape [n, 3])) – Numpy array of positive triples.

• X_neg (ndarray (shape [n, 3])) – Numpy array of negative triples.

If None, the negative triples are generated via corruptions and the user must provide
a positive base rate instead.

• positive_base_rate (float) – Base rate of positive statements.

For example, if we assume there is a fifty-fifty chance of any query to be true, the base
rate would be 50%.

If X_neg is provided and this is None, the relative sizes of X_pos and X_neg will
be used to determine the base rate. For example, if we have 50 positive triples and
200 negative triples, the positive base rate will be assumed to be 50/(50+200) = 1/5 =
0.2.

This must be a value between 0 and 1.

• batches_count (int) – Number of batches to complete one epoch of the Platt
scaling training. Only applies when X_neg is None.

• epochs (int) – Number of epochs used to train the Platt scaling model. Only
applies when X_neg is None.

42 Chapter 3. How to Cite

https://github.com/Accenture/AmpliGraph/tree/paper/ICLR-20/experiments/ICLR-20

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss, log_loss
>>> from scipy.special import expit
>>>
>>> from ampligraph.datasets import load_wn11
>>> from ampligraph.latent_features.models import TransE
>>>
>>> X = load_wn11()
>>> X_valid_pos = X['valid'][X['valid_labels']]
>>> X_valid_neg = X['valid'][~X['valid_labels']]
>>>
>>> model = TransE(batches_count=64, seed=0, epochs=500, k=100, eta=20,
>>> optimizer='adam', optimizer_params={'lr':0.0001},
>>> loss='pairwise', verbose=True)
>>>
>>> model.fit(X['train'])
>>>
>>> # Raw scores
>>> scores = model.predict(X['test'])
>>>
>>> # Calibrate with positives and negatives
>>> model.calibrate(X_valid_pos, X_valid_neg, positive_base_rate=None)
>>> probas_pos_neg = model.predict_proba(X['test'])
>>>
>>> # Calibrate with just positives and base rate of 50%
>>> model.calibrate(X_valid_pos, positive_base_rate=0.5)
>>> probas_pos = model.predict_proba(X['test'])
>>>
>>> # Calibration evaluation with the Brier score loss (the smaller, the
→˓better)
>>> print("Brier scores")
>>> print("Raw scores:", brier_score_loss(X['test_labels'], expit(scores)))
>>> print("Positive and negative calibration:", brier_score_loss(X['test_
→˓labels'], probas_pos_neg))
>>> print("Positive only calibration:", brier_score_loss(X['test_labels'],
→˓probas_pos))
Brier scores
Raw scores: 0.4925058891371126
Positive and negative calibration: 0.20434617882733366
Positive only calibration: 0.22597599585144656

predict_proba(X)
Predicts probabilities using the Platt scaling model (after calibration).

Model must be calibrated beforehand with the calibrate method.

Parameters X (ndarray (shape [n, 3])) – Numpy array of triples to be evaluated.

Returns probas – Probability of each triple to be true according to the Platt scaling calibra-
tion.

Return type ndarray (shape [n])

3.3. API 43

AmpliGraph, Release 1.3.2

HolE

class ampligraph.latent_features.HolE(k=100, eta=2, epochs=100, batches_count=100,
seed=0, embedding_model_params={'corrupt_sides':
['s,o'], 'negative_corruption_entities': 'all'}, opti-
mizer='adam', optimizer_params={'lr': 0.0005},
loss='nll', loss_params={}, regularizer=None,
regularizer_params={}, initializer='xavier', initial-
izer_params={'uniform': False}, verbose=False)

Holographic Embeddings

The HolE model [NRP+16] as re-defined by Hayashi et al. [HS17]:

𝑓𝐻𝑜𝑙𝐸 =
2

𝑛
𝑓𝐶𝑜𝑚𝑝𝑙𝐸𝑥

Examples

>>> import numpy as np
>>> from ampligraph.latent_features import HolE
>>> model = HolE(batches_count=1, seed=555, epochs=100, k=10, eta=5,
>>> loss='pairwise', loss_params={'margin':1},
>>> regularizer='LP', regularizer_params={'lambda':0.1})
>>>
>>> X = np.array([['a', 'y', 'b'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],
>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>> model.fit(X)
>>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
[[0.009254738], [0.00023370088]]

Methods

__init__([k, eta, epochs, batches_count, . . .]) Initialize an EmbeddingModel
fit(X[, early_stopping, early_stopping_params]) Train a HolE model.
get_embeddings(entities[, embedding_type]) Get the embeddings of entities or relations.
get_hyperparameter_dict() Returns hyperparameters of the model.
predict(X[, from_idx]) Predict the scores of triples using a trained embed-

ding model.
calibrate(X_pos[, X_neg, . . .]) Calibrate predictions
predict_proba(X) Predicts probabilities using the Platt scaling model

(after calibration).

__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-
ding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all'},
optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regular-
izer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform':
False}, verbose=False)

44 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Initialize an EmbeddingModel

Also creates a new Tensorflow session for training.

Parameters

• k (int) – Embedding space dimensionality

• eta (int) – The number of negatives that must be generated at runtime during train-
ing for each positive.

• epochs (int) – The iterations of the training loop.

• batches_count (int) – The number of batches in which the training set must be
split during the training loop.

• seed (int) – The seed used by the internal random numbers generator.

• embedding_model_params (dict) – HolE-specific hyperparams:

– negative_corruption_entities - Entities to be used for generation of corruptions
while training. It can take the following values : all (default: all entities), batch
(entities present in each batch), list of entities or an int (which indicates how many
entities that should be used for corruption generation).

– corrupt_sides : Specifies how to generate corruptions for training. Takes values s,
o, s+o or any combination passed as a list.

• optimizer (string) – The optimizer used to minimize the loss function. Choose
between ‘sgd’, ‘adagrad’, ‘adam’, ‘momentum’.

• optimizer_params (dict) – Arguments specific to the optimizer, passed as a
dictionary.

Supported keys:

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

Example: optimizer_params={'lr': 0.01}

• loss (string) – The type of loss function to use during training.

– pairwise the model will use pairwise margin-based loss function.

– nll the model will use negative loss likelihood.

– absolute_margin the model will use absolute margin likelihood.

– self_adversarial the model will use adversarial sampling loss function.

– multiclass_nll the model will use multiclass nll loss. Switch to multi-
class loss defined in [aC15] by passing ‘corrupt_sides’ as [‘s’,’o’] to embed-
ding_model_params. To use loss defined in [KBK17] pass ‘corrupt_sides’ as ‘o’ to
embedding_model_params.

• loss_params (dict) – Dictionary of loss-specific hyperparameters. See loss func-
tions documentation for additional details.

Example: optimizer_params={'lr': 0.01} if loss='pairwise'.

• regularizer (string) – The regularization strategy to use with the loss func-
tion.

– None: the model will not use any regularizer (default)

3.3. API 45

AmpliGraph, Release 1.3.2

– ’LP’: the model will use L1, L2 or L3 based on the value of
regularizer_params['p'] (see below).

• regularizer_params (dict) – Dictionary of regularizer-specific hyperparam-
eters. See the regularizers documentation for additional details.

Example: regularizer_params={'lambda': 1e-5, 'p': 2} if
regularizer='LP'.

• initializer (string) – The type of initializer to use.

– normal: The embeddings will be initialized from a normal distribution

– uniform: The embeddings will be initialized from a uniform distribution

– xavier: The embeddings will be initialized using xavier strategy (default)

• initializer_params (dict) – Dictionary of initializer-specific hyperparame-
ters. See the initializer documentation for additional details.

Example: initializer_params={'mean': 0, 'std': 0.001} if
initializer='normal'.

• verbose (bool) – Verbose mode.

fit(X, early_stopping=False, early_stopping_params={})
Train a HolE model.

The model is trained on a training set X using the training protocol described in [NRP+16].

Parameters

• X (ndarray, shape [n, 3]) – The training triples

• early_stopping (bool) – Flag to enable early stopping (default:False).

If set to True, the training loop adopts the following early stopping heuristic:

– The model will be trained regardless of early stopping for burn_in epochs.

– Every check_interval epochs the method will compute the metric specified
in criteria.

If such metric decreases for stop_interval checks, we stop training early.

Note the metric is computed on x_valid. This is usually a validation set that you
held out.

Also, because criteria is a ranking metric, it requires generating negatives. En-
tities used to generate corruptions can be specified, as long as the side(s) of a triple
to corrupt. The method supports filtered metrics, by passing an array of positives to
x_filter. This will be used to filter the negatives generated on the fly (i.e. the
corruptions).

Note: Keep in mind the early stopping criteria may introduce a certain overhead
(caused by the metric computation). The goal is to strike a good trade-off between
such overhead and saving training epochs.

A common approach is to use MRR unfiltered:

early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'}

46 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Note the size of validation set also contributes to such overhead. In most cases a
smaller validation set would be enough.

• early_stopping_params (dictionary) – Dictionary of hyperparameters for
the early stopping heuristics.

The following string keys are supported:

– ’x_valid’: ndarray, shape [n, 3] : Validation set to be used for early stopping.

– ’criteria’: string : criteria for early stopping ‘hits10’, ‘hits3’, ‘hits1’ or
‘mrr’(default).

– ’x_filter’: ndarray, shape [n, 3] : Positive triples to use as filter if a ‘filtered’
early stopping criteria is desired (i.e. filtered-MRR if ‘criteria’:’mrr’). Note
this will affect training time (no filter by default).

– ’burn_in’: int : Number of epochs to pass before kicking in early stopping
(default: 100).

– check_interval’: int : Early stopping interval after burn-in (default:10).

– ’stop_interval’: int : Stop if criteria is performing worse over n consecutive
checks (default: 3)

– ’corruption_entities’: List of entities to be used for corruptions. If ‘all’, it
uses all entities (default: ‘all’)

– ’corrupt_side’: Specifies which side to corrupt. ‘s’, ‘o’, ‘s+o’ (default)

Example: early_stopping_params={x_valid=X['valid'],
'criteria': 'mrr'}

get_embeddings(entities, embedding_type='entity')
Get the embeddings of entities or relations.

Note: Use ampligraph.utils.create_tensorboard_visualizations() to visualize the
embeddings with TensorBoard.

Parameters

• entities (array-like, dtype=int, shape=[n]) – The entities (or rela-
tions) of interest. Element of the vector must be the original string literals, and not
internal IDs.

• embedding_type (string) – If ‘entity’, entities argument will be consid-
ered as a list of knowledge graph entities (i.e. nodes). If set to ‘relation’, they will be
treated as relation types instead (i.e. predicates).

Returns embeddings – An array of k-dimensional embeddings.

Return type ndarray, shape [n, k]

get_hyperparameter_dict()
Returns hyperparameters of the model.

Returns hyperparam_dict – Dictionary of hyperparameters that were used for training.

Return type dict

3.3. API 47

AmpliGraph, Release 1.3.2

predict(X, from_idx=False)
Predict the scores of triples using a trained embedding model. The function returns raw scores generated
by the model.

Note: To obtain probability estimates, calibrate the model with calibrate(), then call
predict_proba().

Parameters

• X (ndarray, shape [n, 3]) – The triples to score.

• from_idx (bool) – If True, will skip conversion to internal IDs. (default: False).

Returns scores_predict – The predicted scores for input triples X.

Return type ndarray, shape [n]

calibrate(X_pos, X_neg=None, positive_base_rate=None, batches_count=100, epochs=50)
Calibrate predictions

The method implements the heuristics described in [TC20], using Platt scaling [P+99].

The calibrated predictions can be obtained with predict_proba() after calibration is done.

Ideally, calibration should be performed on a validation set that was not used to train the embeddings.

There are two modes of operation, depending on the availability of negative triples:

1. Both positive and negative triples are provided via X_pos and X_neg respectively. The optimiza-
tion is done using a second-order method (limited-memory BFGS), therefore no hyperparameter
needs to be specified.

2. Only positive triples are provided, and the negative triples are generated by corruptions just like
it is done in training or evaluation. The optimization is done using a first-order method (ADAM),
therefore batches_count and epochs must be specified.

Calibration is highly dependent on the base rate of positive triples. Therefore, for mode (2) of operation,
the user is required to provide the positive_base_rate argument. For mode (1), that can be inferred
automatically by the relative sizes of the positive and negative sets, but the user can override that by
providing a value to positive_base_rate.

Defining the positive base rate is the biggest challenge when calibrating without negatives. That depends
on the user choice of which triples will be evaluated during test time. Let’s take WN11 as an example: it
has around 50% positives triples on both the validation set and test set, so naturally the positive base rate is
50%. However, should the user resample it to have 75% positives and 25% negatives, its previous calibra-
tion will be degraded. The user must recalibrate the model now with a 75% positive base rate. Therefore,
this parameter depends on how the user handles the dataset and cannot be determined automatically or a
priori.

Note: Incompatible with large graph mode (i.e. if self.dealing_with_large_graphs=True).

Note: [TC20] calibration experiments available here.

Parameters

• X_pos (ndarray (shape [n, 3])) – Numpy array of positive triples.

48 Chapter 3. How to Cite

https://github.com/Accenture/AmpliGraph/tree/paper/ICLR-20/experiments/ICLR-20

AmpliGraph, Release 1.3.2

• X_neg (ndarray (shape [n, 3])) – Numpy array of negative triples.

If None, the negative triples are generated via corruptions and the user must provide
a positive base rate instead.

• positive_base_rate (float) – Base rate of positive statements.

For example, if we assume there is a fifty-fifty chance of any query to be true, the base
rate would be 50%.

If X_neg is provided and this is None, the relative sizes of X_pos and X_neg will
be used to determine the base rate. For example, if we have 50 positive triples and
200 negative triples, the positive base rate will be assumed to be 50/(50+200) = 1/5 =
0.2.

This must be a value between 0 and 1.

• batches_count (int) – Number of batches to complete one epoch of the Platt
scaling training. Only applies when X_neg is None.

• epochs (int) – Number of epochs used to train the Platt scaling model. Only
applies when X_neg is None.

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss, log_loss
>>> from scipy.special import expit
>>>
>>> from ampligraph.datasets import load_wn11
>>> from ampligraph.latent_features.models import TransE
>>>
>>> X = load_wn11()
>>> X_valid_pos = X['valid'][X['valid_labels']]
>>> X_valid_neg = X['valid'][~X['valid_labels']]
>>>
>>> model = TransE(batches_count=64, seed=0, epochs=500, k=100, eta=20,
>>> optimizer='adam', optimizer_params={'lr':0.0001},
>>> loss='pairwise', verbose=True)
>>>
>>> model.fit(X['train'])
>>>
>>> # Raw scores
>>> scores = model.predict(X['test'])
>>>
>>> # Calibrate with positives and negatives
>>> model.calibrate(X_valid_pos, X_valid_neg, positive_base_rate=None)
>>> probas_pos_neg = model.predict_proba(X['test'])
>>>
>>> # Calibrate with just positives and base rate of 50%
>>> model.calibrate(X_valid_pos, positive_base_rate=0.5)
>>> probas_pos = model.predict_proba(X['test'])
>>>
>>> # Calibration evaluation with the Brier score loss (the smaller, the
→˓better)
>>> print("Brier scores")
>>> print("Raw scores:", brier_score_loss(X['test_labels'], expit(scores)))
>>> print("Positive and negative calibration:", brier_score_loss(X['test_
→˓labels'], probas_pos_neg))

(continues on next page)

3.3. API 49

AmpliGraph, Release 1.3.2

(continued from previous page)

>>> print("Positive only calibration:", brier_score_loss(X['test_labels'],
→˓probas_pos))
Brier scores
Raw scores: 0.4925058891371126
Positive and negative calibration: 0.20434617882733366
Positive only calibration: 0.22597599585144656

predict_proba(X)
Predicts probabilities using the Platt scaling model (after calibration).

Model must be calibrated beforehand with the calibrate method.

Parameters X (ndarray (shape [n, 3])) – Numpy array of triples to be evaluated.

Returns probas – Probability of each triple to be true according to the Platt scaling calibra-
tion.

Return type ndarray (shape [n])

ConvE

class ampligraph.latent_features.ConvE(k=100, eta=2, epochs=100, batches_count=100,
seed=0, embedding_model_params={'conv_filters':
32, 'conv_kernel_size': 3, 'dropout_conv': 0.3,
'dropout_dense': 0.2, 'dropout_embed': 0.2,
'use_batchnorm': True, 'use_bias': True}, opti-
mizer='adam', optimizer_params={'lr': 0.0005},
loss='bce', loss_params={'label_smoothing':
0.1, 'label_weighting': False}, regular-
izer=None, regularizer_params={}, initial-
izer='xavier', initializer_params={'uniform': False},
low_memory=False, verbose=False)

Convolutional 2D KG Embeddings

The ConvE model [DMSR18].

ConvE uses convolutional layers. 𝑔 is a non-linear activation function, * is the linear convolution operator, 𝑣𝑒𝑐
indicates 2D reshaping.

𝑓𝐶𝑜𝑛𝑣𝐸 = ⟨𝜎 (𝑣𝑒𝑐 (𝑔 ([e𝑠; r𝑝] * Ω))W)) e𝑜⟩

Note: ConvE does not handle ‘s+o’ corruptions currently, nor large_graph mode.

Examples

>>> import numpy as np
>>> from ampligraph.latent_features import ConvE
>>> model = ConvE(batches_count=1, seed=22, epochs=5, k=100)
>>>
>>> X = np.array([['a', 'y', 'b'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],

(continues on next page)

50 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

(continued from previous page)

>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>> model.fit(X)
>>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
[0.42921206 0.38998795]

Attributes

__init__([k, eta, epochs, batches_count, . . .]) Initialize a ConvE model
fit(X[, early_stopping, early_stopping_params]) Train a ConvE (with optional early stopping).
get_embeddings(entities[, embedding_type]) Get the embeddings of entities or relations.
get_hyperparameter_dict() Returns hyperparameters of the model.
predict(X[, from_idx]) Predict the scores of triples using a trained embed-

ding model.
calibrate(X_pos[, X_neg, . . .]) Calibrate predictions
predict_proba(X) Predicts probabilities using the Platt scaling model

(after calibration).

__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-
ding_model_params={'conv_filters': 32, 'conv_kernel_size': 3, 'dropout_conv':
0.3, 'dropout_dense': 0.2, 'dropout_embed': 0.2, 'use_batchnorm': True,
'use_bias': True}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='bce',
loss_params={'label_smoothing': 0.1, 'label_weighting': False}, regularizer=None,
regularizer_params={}, initializer='xavier', initializer_params={'uniform': False},
low_memory=False, verbose=False)

Initialize a ConvE model

Also creates a new Tensorflow session for training.

Parameters

• k (int) – Embedding space dimensionality.

• eta (int) – The number of negatives that must be generated at runtime during train-
ing for each positive. Note: This parameter is not used in ConvE.

• epochs (int) – The iterations of the training loop.

• batches_count (int) – The number of batches in which the training set must be
split during the training loop.

• seed (int) – The seed used by the internal random numbers generator.

• embedding_model_params (dict) – ConvE-specific hyperparams:

– conv_filters (int): Number of convolution feature maps. Default: 32

– conv_kernel_size (int): Convolution kernel size. Default: 3

– dropout_embed (float|None): Dropout on the embedding layer. Default: 0.2

– dropout_conv (float|None): Dropout on the convolution maps. Default: 0.3

– dropout_dense (float|None): Dropout on the dense layer. Default: 0.2

3.3. API 51

AmpliGraph, Release 1.3.2

– use_bias (bool): Use bias layer. Default: True

– use_batchnorm (bool): Use batch normalization after input, convolution, dense
layers. Default: True

• optimizer (string) – The optimizer used to minimize the loss function. Choose
between ‘sgd’, ‘adagrad’, ‘adam’, ‘momentum’.

• optimizer_params (dict) – Arguments specific to the optimizer, passed as a
dictionary.

Supported keys:

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

Example: optimizer_params={'lr': 0.01}

• loss (string) – The type of loss function to use during training.

– bce the model will use binary cross entropy loss function.

• loss_params (dict) – Dictionary of loss-specific hyperparameters. See loss func-
tions documentation for additional details.

Supported keys:

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

– ’label_smoothing’ (float): applies label smoothing to one-hot outputs. Default:
0.1.

– ’label_weighting’ (bool): applies label weighting to one-hot outputs. Default:
True

Example: optimizer_params={'lr': 0.01, 'label_smoothing':
0.1}

• regularizer (string) – The regularization strategy to use with the loss func-
tion.

– None: the model will not use any regularizer (default)

– LP: the model will use L1, L2 or L3 based on the value of
regularizer_params['p'] (see below).

• regularizer_params (dict) – Dictionary of regularizer-specific hyperparam-
eters. See the regularizers documentation for additional details.

Example: regularizer_params={'lambda': 1e-5, 'p': 2} if
regularizer='LP'.

• initializer (string) – The type of initializer to use.

– normal: The embeddings will be initialized from a normal distribution

– uniform: The embeddings will be initialized from a uniform distribution

– xavier: The embeddings will be initialized using xavier strategy (default)

52 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• initializer_params (dict) – Dictionary of initializer-specific hyperparame-
ters. See the initializer documentation for additional details.

Example: initializer_params={'mean': 0, 'std': 0.001} if
initializer='normal'.

• verbose (bool) – Verbose mode.

• low_memory (bool) – Train ConvE with a (slower) low_memory option. If Mem-
oryError is still encountered, try raising the batches_count value. Default: False.

fit(X, early_stopping=False, early_stopping_params={})
Train a ConvE (with optional early stopping).

The model is trained on a training set X using the training protocol described in [DMSR18].

Parameters

• X (ndarray (shape [n, 3]) or object of
ConvEDatasetAdapter) – Numpy array of training triples OR handle of
Dataset adapter which would help retrieve data.

• early_stopping (bool) – Flag to enable early stopping (default:False)

• early_stopping_params (dictionary) – Dictionary of hyperparameters for
the early stopping heuristics.

The following string keys are supported:

– ’x_valid’: ndarray (shape [n, 3]) or object of AmpligraphDatasetAdapter :
Numpy array of validation triples OR handle of Dataset adapter which
would help retrieve data.

– ’criteria’: string : criteria for early stopping ‘hits10’, ‘hits3’, ‘hits1’ or
‘mrr’(default).

– ’x_filter’: ndarray, shape [n, 3] [Positive triples to use as filter if a ‘filtered’
early] stopping criteria is desired (i.e. filtered-MRR if ‘criteria’:’mrr’).
Note this will affect training time (no filter by default). If the filter has
already been set in the adapter, pass True

– ’burn_in’: int : Number of epochs to pass before kicking in early stopping
(default: 100).

– check_interval’: int : Early stopping interval after burn-in (default:10).

– ’stop_interval’: int : Stop if criteria is performing worse over n consecutive
checks (default: 3)

– ’corruption_entities’: List of entities to be used for corruptions. If ‘all’, it
uses all entities (default: ‘all’)

– ’corrupt_side’: Specifies which side to corrupt. ‘o’ (default). Note: ConvE does not
currently support subject corruptions in early stopping.

Example: early_stopping_params={x_valid=X['valid'],
'criteria': 'mrr'}

get_embeddings(entities, embedding_type='entity')
Get the embeddings of entities or relations.

3.3. API 53

AmpliGraph, Release 1.3.2

Note: Use ampligraph.utils.create_tensorboard_visualizations() to visualize the
embeddings with TensorBoard.

Parameters

• entities (array-like, dtype=int, shape=[n]) – The entities (or
relations) of interest. Element of the vector must be the original string literals,
and not internal IDs.

• embedding_type (string) – If ‘entity’, entities argument will be con-
sidered as a list of knowledge graph entities (i.e. nodes). If set to ‘relation’, they
will be treated as relation types instead (i.e. predicates).

Returns embeddings – An array of k-dimensional embeddings.

Return type ndarray, shape [n, k]

get_hyperparameter_dict()
Returns hyperparameters of the model.

Returns hyperparam_dict – Dictionary of hyperparameters that were used for training.

Return type dict

predict(X, from_idx=False)

Predict the scores of triples using a trained embedding model. The function returns raw scores gen-
erated by the model.

Note: To obtain probability estimates, calibrate the model with calibrate(), then call
predict_proba().

Parameters

• X (ndarray, shape [n, 3]) – The triples to score.

• from_idx (bool) – If True, will skip conversion to internal IDs. (default: False).

Returns scores_predict – The predicted scores for input triples X.

Return type ndarray, shape [n]

calibrate(X_pos, X_neg=None, positive_base_rate=None, batches_count=100, epochs=50)
Calibrate predictions

The method implements the heuristics described in [TC20], using Platt scaling [P+99].

The calibrated predictions can be obtained with predict_proba() after calibration is done.

Ideally, calibration should be performed on a validation set that was not used to train the embeddings.

There are two modes of operation, depending on the availability of negative triples:

1. Both positive and negative triples are provided via X_pos and X_neg respectively. The optimiza-
tion is done using a second-order method (limited-memory BFGS), therefore no hyperparameter
needs to be specified.

54 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

2. Only positive triples are provided, and the negative triples are generated by corruptions just like
it is done in training or evaluation. The optimization is done using a first-order method (ADAM),
therefore batches_count and epochs must be specified.

Calibration is highly dependent on the base rate of positive triples. Therefore, for mode (2) of operation,
the user is required to provide the positive_base_rate argument. For mode (1), that can be inferred
automatically by the relative sizes of the positive and negative sets, but the user can override that by
providing a value to positive_base_rate.

Defining the positive base rate is the biggest challenge when calibrating without negatives. That depends
on the user choice of which triples will be evaluated during test time. Let’s take WN11 as an example: it
has around 50% positives triples on both the validation set and test set, so naturally the positive base rate is
50%. However, should the user resample it to have 75% positives and 25% negatives, its previous calibra-
tion will be degraded. The user must recalibrate the model now with a 75% positive base rate. Therefore,
this parameter depends on how the user handles the dataset and cannot be determined automatically or a
priori.

Note: Incompatible with large graph mode (i.e. if self.dealing_with_large_graphs=True).

Note: [TC20] calibration experiments available here.

Parameters

• X_pos (ndarray (shape [n, 3])) – Numpy array of positive triples.

• X_neg (ndarray (shape [n, 3])) – Numpy array of negative triples.

If None, the negative triples are generated via corruptions and the user must provide
a positive base rate instead.

• positive_base_rate (float) – Base rate of positive statements.

For example, if we assume there is a fifty-fifty chance of any query to be true, the
base rate would be 50%.

If X_neg is provided and this is None, the relative sizes of X_pos and X_neg
will be used to determine the base rate. For example, if we have 50 positive triples
and 200 negative triples, the positive base rate will be assumed to be 50/(50+200)
= 1/5 = 0.2.

This must be a value between 0 and 1.

• batches_count (int) – Number of batches to complete one epoch of the Platt
scaling training. Only applies when X_neg is None.

• epochs (int) – Number of epochs used to train the Platt scaling model. Only
applies when X_neg is None.

3.3. API 55

https://github.com/Accenture/AmpliGraph/tree/paper/ICLR-20/experiments/ICLR-20

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss, log_loss
>>> from scipy.special import expit
>>>
>>> from ampligraph.datasets import load_wn11
>>> from ampligraph.latent_features.models import TransE
>>>
>>> X = load_wn11()
>>> X_valid_pos = X['valid'][X['valid_labels']]
>>> X_valid_neg = X['valid'][~X['valid_labels']]
>>>
>>> model = TransE(batches_count=64, seed=0, epochs=500, k=100, eta=20,
>>> optimizer='adam', optimizer_params={'lr':0.0001},
>>> loss='pairwise', verbose=True)
>>>
>>> model.fit(X['train'])
>>>
>>> # Raw scores
>>> scores = model.predict(X['test'])
>>>
>>> # Calibrate with positives and negatives
>>> model.calibrate(X_valid_pos, X_valid_neg, positive_base_rate=None)
>>> probas_pos_neg = model.predict_proba(X['test'])
>>>
>>> # Calibrate with just positives and base rate of 50%
>>> model.calibrate(X_valid_pos, positive_base_rate=0.5)
>>> probas_pos = model.predict_proba(X['test'])
>>>
>>> # Calibration evaluation with the Brier score loss (the smaller, the
→˓better)
>>> print("Brier scores")
>>> print("Raw scores:", brier_score_loss(X['test_labels'], expit(scores)))
>>> print("Positive and negative calibration:", brier_score_loss(X['test_
→˓labels'], probas_pos_neg))
>>> print("Positive only calibration:", brier_score_loss(X['test_labels'],
→˓probas_pos))
Brier scores
Raw scores: 0.4925058891371126
Positive and negative calibration: 0.20434617882733366
Positive only calibration: 0.22597599585144656

predict_proba(X)
Predicts probabilities using the Platt scaling model (after calibration).

Model must be calibrated beforehand with the calibrate method.

Parameters X (ndarray (shape [n, 3])) – Numpy array of triples to be evaluated.

Returns probas – Probability of each triple to be true according to the Platt scaling calibra-
tion.

Return type ndarray (shape [n])

56 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

ConvKB

class ampligraph.latent_features.ConvKB(k=100, eta=2, epochs=100, batches_count=100,
seed=0, embedding_model_params={'dropout':
0.1, 'filter_sizes': [1], 'num_filters': 32},
optimizer='adam', optimizer_params={'lr':
0.0005}, loss='nll', loss_params={}, regular-
izer=None, regularizer_params={}, initial-
izer='xavier', initializer_params={'uniform':
False}, large_graphs=False, verbose=False)

Convolution-based model

The ConvKB model [NNNP18]:

𝑓𝐶𝑜𝑛𝑣𝐾𝐵 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑔 ([e𝑠, r𝑝, e𝑜]) * Ω)) ·𝑊

where 𝑔 is a non-linear function, * is the convolution operator, · is the dot product, 𝑐𝑜𝑛𝑐𝑎𝑡 is the concatenation
operator and Ω is a set of filters.

Note: The evaluation protocol implemented in ampligraph.evaluation.
evaluate_performance() assigns the worst rank to a positive test triple in case of a tie with
negatives. This is the agreed upon behaviour in literature. The original ConvKB implementation [NNNP18]
assigns instead the top rank, hence leading to results which are not directly comparable with literature . We
report results obtained with the agreed-upon protocol (tie=worst rank). Note that under these conditions the
model does not reach the state-of-the-art results claimed in the original paper.

Examples

>>> from ampligraph.latent_features import ConvKB
>>> from ampligraph.datasets import load_wn18
>>> model = ConvKB(batches_count=2, seed=22, epochs=1, k=10, eta=1,
>>> embedding_model_params={'num_filters': 32, 'filter_sizes': [1],
>>> 'dropout': 0.1},
>>> optimizer='adam', optimizer_params={'lr': 0.001},
>>> loss='pairwise', loss_params={}, verbose=True)
>>>
>>> X = load_wn18()
>>>
>>> model.fit(X['train'])
>>>
>>> print(model.predict(X['test'][:5]))
[[0.2803744], [0.0866661], [0.012815937], [-0.004235901], [-0.010947697]]

Methods

__init__([k, eta, epochs, batches_count, . . .]) Initialize an EmbeddingModel
fit(X[, early_stopping, early_stopping_params]) Train a ConvKB model (with optional early stop-

ping).
get_embeddings(entities[, embedding_type]) Get the embeddings of entities or relations.
get_hyperparameter_dict() Returns hyperparameters of the model.

Continued on next page

3.3. API 57

https://github.com/daiquocnguyen/ConvKB/issues/5

AmpliGraph, Release 1.3.2

Table 10 – continued from previous page
predict(X[, from_idx]) Predict the scores of triples using a trained embed-

ding model.
calibrate(X_pos[, X_neg, . . .]) Calibrate predictions
predict_proba(X) Predicts probabilities using the Platt scaling model

(after calibration).

__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-
ding_model_params={'dropout': 0.1, 'filter_sizes': [1], 'num_filters': 32}, opti-
mizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regular-
izer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform':
False}, large_graphs=False, verbose=False)

Initialize an EmbeddingModel

Parameters

• k (int) – Embedding space dimensionality.

• eta (int) – The number of negatives that must be generated at runtime during
training for each positive.

• epochs (int) – The iterations of the training loop.

• batches_count (int) – The number of batches in which the training set must
be split during the training loop.

• seed (int) – The seed used by the internal random numbers generator.

• embedding_model_params (dict) – ConvKB-specific hyperparams: -
num_filters - Number of feature maps per convolution kernel. Default: 32 - fil-
ter_sizes - List of convolution kernel sizes. Default: [1] - dropout - Dropout on
the embedding layer. Default: 0.0

• optimizer (string) – The optimizer used to minimize the loss function.
Choose between ‘sgd’, ‘adagrad’, ‘adam’, ‘momentum’.

• optimizer_params (dict) – Arguments specific to the optimizer, passed as
a dictionary.

Supported keys:

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

Example: optimizer_params={'lr': 0.01}

• loss (string) – The type of loss function to use during training.

• loss_params (dict) – Dictionary of loss-specific hyperparameters. See loss
functions documentation for additional details.

Supported keys:

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

Example: optimizer_params={'lr': 0.01,
'label_smoothing': 0.1}

58 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• regularizer (string) – The regularization strategy to use with the loss func-
tion.

– None: the model will not use any regularizer (default)

– LP: the model will use L1, L2 or L3 based on the value of
regularizer_params['p'] (see below).

• regularizer_params (dict) – Dictionary of regularizer-specific hyperpa-
rameters. See the regularizers documentation for additional details.

Example: regularizer_params={'lambda': 1e-5, 'p': 2} if
regularizer='LP'.

• initializer (string) – The type of initializer to use.

– normal: The embeddings will be initialized from a normal distribution

– uniform: The embeddings will be initialized from a uniform distribution

– xavier: The embeddings will be initialized using xavier strategy (default)

• initializer_params (dict) – Dictionary of initializer-specific hyperpa-
rameters. See the initializer documentation for additional details.

Example: initializer_params={'mean': 0, 'std': 0.001} if
initializer='normal'.

• large_graphs (bool) – Avoid loading entire dataset onto GPU when dealing
with large graphs.

• verbose (bool) – Verbose mode.

fit(X, early_stopping=False, early_stopping_params={})
Train a ConvKB model (with optional early stopping).

The model is trained on a training set X using the training protocol described in [TWR+16].

Parameters

• X (ndarray, shape [n, 3]) – The training triples

• early_stopping (bool) – Flag to enable early stopping (default:False).

If set to True, the training loop adopts the following early stopping heuristic:

– The model will be trained regardless of early stopping for burn_in epochs.

– Every check_interval epochs the method will compute the metric speci-
fied in criteria.

If such metric decreases for stop_interval checks, we stop training early.

Note the metric is computed on x_valid. This is usually a validation set that you
held out.

Also, because criteria is a ranking metric, it requires generating negatives.
Entities used to generate corruptions can be specified, as long as the side(s) of
a triple to corrupt. The method supports filtered metrics, by passing an array of
positives to x_filter. This will be used to filter the negatives generated on the
fly (i.e. the corruptions).

Note: Keep in mind the early stopping criteria may introduce a certain overhead
(caused by the metric computation). The goal is to strike a good trade-off between
such overhead and saving training epochs.

3.3. API 59

AmpliGraph, Release 1.3.2

A common approach is to use MRR unfiltered:

early_stopping_params={x_valid=X['valid'], 'criteria':
'mrr'}

Note the size of validation set also contributes to such overhead. In most cases a
smaller validation set would be enough.

• early_stopping_params (dictionary) – Dictionary of hyperparameters
for the early stopping heuristics.

The following string keys are supported:

– ’x_valid’: ndarray, shape [n, 3] : Validation set to be used for early
stopping.

– ’criteria’: string : criteria for early stopping ‘hits10’, ‘hits3’, ‘hits1’ or
‘mrr’(default).

– ’x_filter’: ndarray, shape [n, 3] : Positive triples to use as filter if a
‘filtered’ early stopping criteria is desired (i.e. filtered-MRR if ‘crite-
ria’:’mrr’). Note this will affect training time (no filter by default).

– ’burn_in’: int : Number of epochs to pass before kicking in early stop-
ping (default: 100).

– check_interval’: int : Early stopping interval after burn-in (default:10).

– ’stop_interval’: int : Stop if criteria is performing worse over n con-
secutive checks (default: 3)

– ’corruption_entities’: List of entities to be used for corruptions. If
‘all’, it uses all entities (default: ‘all’)

– ’corrupt_side’: Specifies which side to corrupt. ‘s’, ‘o’, ‘s+o’ (default)

Example: early_stopping_params={x_valid=X['valid'],
'criteria': 'mrr'}

get_embeddings(entities, embedding_type='entity')
Get the embeddings of entities or relations.

Note: Use ampligraph.utils.create_tensorboard_visualizations() to visualize the
embeddings with TensorBoard.

Parameters

• entities (array-like, dtype=int, shape=[n]) – The entities (or
relations) of interest. Element of the vector must be the original string literals,
and not internal IDs.

• embedding_type (string) – If ‘entity’, entities argument will be con-
sidered as a list of knowledge graph entities (i.e. nodes). If set to ‘relation’, they
will be treated as relation types instead (i.e. predicates).

Returns embeddings – An array of k-dimensional embeddings.

Return type ndarray, shape [n, k]

60 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

get_hyperparameter_dict()
Returns hyperparameters of the model.

Returns hyperparam_dict – Dictionary of hyperparameters that were used for training.

Return type dict

predict(X, from_idx=False)
Predict the scores of triples using a trained embedding model. The function returns raw scores generated
by the model.

Note: To obtain probability estimates, calibrate the model with calibrate(), then call
predict_proba().

Parameters

• X (ndarray, shape [n, 3]) – The triples to score.

• from_idx (bool) – If True, will skip conversion to internal IDs. (default: False).

Returns scores_predict – The predicted scores for input triples X.

Return type ndarray, shape [n]

calibrate(X_pos, X_neg=None, positive_base_rate=None, batches_count=100, epochs=50)
Calibrate predictions

The method implements the heuristics described in [TC20], using Platt scaling [P+99].

The calibrated predictions can be obtained with predict_proba() after calibration is done.

Ideally, calibration should be performed on a validation set that was not used to train the embeddings.

There are two modes of operation, depending on the availability of negative triples:

1. Both positive and negative triples are provided via X_pos and X_neg respectively. The optimiza-
tion is done using a second-order method (limited-memory BFGS), therefore no hyperparameter
needs to be specified.

2. Only positive triples are provided, and the negative triples are generated by corruptions just like
it is done in training or evaluation. The optimization is done using a first-order method (ADAM),
therefore batches_count and epochs must be specified.

Calibration is highly dependent on the base rate of positive triples. Therefore, for mode (2) of operation,
the user is required to provide the positive_base_rate argument. For mode (1), that can be inferred
automatically by the relative sizes of the positive and negative sets, but the user can override that by
providing a value to positive_base_rate.

Defining the positive base rate is the biggest challenge when calibrating without negatives. That depends
on the user choice of which triples will be evaluated during test time. Let’s take WN11 as an example: it
has around 50% positives triples on both the validation set and test set, so naturally the positive base rate is
50%. However, should the user resample it to have 75% positives and 25% negatives, its previous calibra-
tion will be degraded. The user must recalibrate the model now with a 75% positive base rate. Therefore,
this parameter depends on how the user handles the dataset and cannot be determined automatically or a
priori.

Note: Incompatible with large graph mode (i.e. if self.dealing_with_large_graphs=True).

3.3. API 61

AmpliGraph, Release 1.3.2

Note: [TC20] calibration experiments available here.

Parameters

• X_pos (ndarray (shape [n, 3])) – Numpy array of positive triples.

• X_neg (ndarray (shape [n, 3])) – Numpy array of negative triples.

If None, the negative triples are generated via corruptions and the user must provide
a positive base rate instead.

• positive_base_rate (float) – Base rate of positive statements.

For example, if we assume there is a fifty-fifty chance of any query to be true, the
base rate would be 50%.

If X_neg is provided and this is None, the relative sizes of X_pos and X_neg
will be used to determine the base rate. For example, if we have 50 positive triples
and 200 negative triples, the positive base rate will be assumed to be 50/(50+200)
= 1/5 = 0.2.

This must be a value between 0 and 1.

• batches_count (int) – Number of batches to complete one epoch of the Platt
scaling training. Only applies when X_neg is None.

• epochs (int) – Number of epochs used to train the Platt scaling model. Only
applies when X_neg is None.

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss, log_loss
>>> from scipy.special import expit
>>>
>>> from ampligraph.datasets import load_wn11
>>> from ampligraph.latent_features.models import TransE
>>>
>>> X = load_wn11()
>>> X_valid_pos = X['valid'][X['valid_labels']]
>>> X_valid_neg = X['valid'][~X['valid_labels']]
>>>
>>> model = TransE(batches_count=64, seed=0, epochs=500, k=100, eta=20,
>>> optimizer='adam', optimizer_params={'lr':0.0001},
>>> loss='pairwise', verbose=True)
>>>
>>> model.fit(X['train'])
>>>
>>> # Raw scores
>>> scores = model.predict(X['test'])
>>>
>>> # Calibrate with positives and negatives
>>> model.calibrate(X_valid_pos, X_valid_neg, positive_base_rate=None)
>>> probas_pos_neg = model.predict_proba(X['test'])
>>>
>>> # Calibrate with just positives and base rate of 50%
>>> model.calibrate(X_valid_pos, positive_base_rate=0.5)

(continues on next page)

62 Chapter 3. How to Cite

https://github.com/Accenture/AmpliGraph/tree/paper/ICLR-20/experiments/ICLR-20

AmpliGraph, Release 1.3.2

(continued from previous page)

>>> probas_pos = model.predict_proba(X['test'])
>>>
>>> # Calibration evaluation with the Brier score loss (the smaller, the
→˓better)
>>> print("Brier scores")
>>> print("Raw scores:", brier_score_loss(X['test_labels'], expit(scores)))
>>> print("Positive and negative calibration:", brier_score_loss(X['test_
→˓labels'], probas_pos_neg))
>>> print("Positive only calibration:", brier_score_loss(X['test_labels'],
→˓probas_pos))
Brier scores
Raw scores: 0.4925058891371126
Positive and negative calibration: 0.20434617882733366
Positive only calibration: 0.22597599585144656

predict_proba(X)
Predicts probabilities using the Platt scaling model (after calibration).

Model must be calibrated beforehand with the calibrate method.

Parameters X (ndarray (shape [n, 3])) – Numpy array of triples to be evaluated.

Returns probas – Probability of each triple to be true according to the Platt scaling calibra-
tion.

Return type ndarray (shape [n])

Anatomy of a Model

Knowledge graph embeddings are learned by training a neural architecture over a graph. Although such architectures
vary, the training phase always consists in minimizing a loss function ℒ that includes a scoring function 𝑓𝑚(𝑡), i.e. a
model-specific function that assigns a score to a triple 𝑡 = (𝑠𝑢𝑏, 𝑝𝑟𝑒𝑑, 𝑜𝑏𝑗).

AmpliGraph models include the following components:

• Scoring function 𝑓(𝑡)

• Loss function ℒ

• Optimization algorithm

• Regularizer

• Initializer

• Negatives generation strategy

AmpliGraph comes with a number of such components. They can be used in any combination to come up with a
model that performs sufficiently well for the dataset of choice.

AmpliGraph features a number of abstract classes that can be extended to design new models:

EmbeddingModel([k, eta, epochs, . . .]) Abstract class for embedding models
Loss(eta, hyperparam_dict[, verbose]) Abstract class for loss function.
Regularizer(hyperparam_dict[, verbose]) Abstract class for Regularizer.
Initializer([initializer_params, verbose, seed]) Abstract class for initializer .

3.3. API 63

AmpliGraph, Release 1.3.2

EmbeddingModel

class ampligraph.latent_features.EmbeddingModel(k=100, eta=2, epochs=100,
batches_count=100, seed=0,
embedding_model_params={},
optimizer='adam', opti-
mizer_params={'lr': 0.0005},
loss='nll', loss_params={}, regu-
larizer=None, regularizer_params={},
initializer='xavier', initial-
izer_params={'uniform': False},
large_graphs=False, verbose=False)

Abstract class for embedding models

AmpliGraph neural knowledge graph embeddings models extend this class and its core methods.

Methods

__init__([k, eta, epochs, batches_count, . . .]) Initialize an EmbeddingModel
fit(X[, early_stopping, early_stopping_params]) Train an EmbeddingModel (with optional early stop-

ping).
get_embeddings(entities[, embedding_type]) Get the embeddings of entities or relations.
get_hyperparameter_dict() Returns hyperparameters of the model.
predict(X[, from_idx]) Predict the scores of triples using a trained embed-

ding model.
calibrate(X_pos[, X_neg, . . .]) Calibrate predictions
predict_proba(X) Predicts probabilities using the Platt scaling model

(after calibration).
_fn(e_s, e_p, e_o) The scoring function of the model.
_initialize_parameters() Initialize parameters of the model.
_get_model_loss(dataset_iterator) Get the current loss including loss due to regulariza-

tion.
get_embedding_model_params(output_dict) Save the model parameters in the dictionary.
restore_model_params(in_dict) Load the model parameters from the input dictionary.
_save_trained_params() After model fitting, save all the trained parameters in

trained_model_params in some order.
_load_model_from_trained_params() Load the model from trained params.
_initialize_early_stopping() Initializes and creates evaluation graph for early

stopping.
_perform_early_stopping_test(epoch) Performs regular validation checks and stop early if

the criteria is achieved.
configure_evaluation_protocol([config]) Set the configuration for evaluation
set_filter_for_eval() Configures to use filter
_initialize_eval_graph([mode]) Initialize the evaluation graph.
end_evaluation() End the evaluation and close the Tensorflow session.

__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={},
optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regu-
larizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform':
False}, large_graphs=False, verbose=False)

Initialize an EmbeddingModel

64 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Also creates a new Tensorflow session for training.

Parameters

• k (int) – Embedding space dimensionality.

• eta (int) – The number of negatives that must be generated at runtime during
training for each positive.

• epochs (int) – The iterations of the training loop.

• batches_count (int) – The number of batches in which the training set must
be split during the training loop.

• seed (int) – The seed used by the internal random numbers generator.

• embedding_model_params (dict) – Model-specific hyperparams, passed to
the model as a dictionary. Refer to model-specific documentation for details.

• optimizer (string) – The optimizer used to minimize the loss function.
Choose between ‘sgd’, ‘adagrad’, ‘adam’, ‘momentum’.

• optimizer_params (dict) – Arguments specific to the optimizer, passed as
a dictionary.

Supported keys:

– ’lr’ (float): learning rate (used by all the optimizers). Default: 0.1.

– ’momentum’ (float): learning momentum (only used when
optimizer=momentum). Default: 0.9.

Example: optimizer_params={'lr': 0.01}

• loss (string) – The type of loss function to use during training.

– pairwise the model will use pairwise margin-based loss function.

– nll the model will use negative loss likelihood.

– absolute_margin the model will use absolute margin likelihood.

– self_adversarial the model will use adversarial sampling loss function.

– multiclass_nll the model will use multiclass nll loss. Switch to multi-
class loss defined in [aC15] by passing ‘corrupt_side’ as [‘s’,’o’] to embed-
ding_model_params. To use loss defined in [KBK17] pass ‘corrupt_side’ as
‘o’ to embedding_model_params.

• loss_params (dict) – Dictionary of loss-specific hyperparameters. See loss
functions documentation for additional details.

Example: optimizer_params={'lr': 0.01} if loss='pairwise'.

• regularizer (string) – The regularization strategy to use with the loss func-
tion.

– None: the model will not use any regularizer (default)

– LP: the model will use L1, L2 or L3 based on the value of
regularizer_params['p'] (see below).

• regularizer_params (dict) – Dictionary of regularizer-specific hyperpa-
rameters. See the regularizers documentation for additional details.

Example: regularizer_params={'lambda': 1e-5, 'p': 2} if
regularizer='LP'.

3.3. API 65

AmpliGraph, Release 1.3.2

• initializer (string) – The type of initializer to use.

– normal: The embeddings will be initialized from a normal distribution

– uniform: The embeddings will be initialized from a uniform distribution

– xavier: The embeddings will be initialized using xavier strategy (default)

• initializer_params (dict) – Dictionary of initializer-specific hyperpa-
rameters. See the initializer documentation for additional details.

Example: initializer_params={'mean': 0, 'std': 0.001} if
initializer='normal'.

• large_graphs (bool) – Avoid loading entire dataset onto GPU when dealing
with large graphs.

• verbose (bool) – Verbose mode.

fit(X, early_stopping=False, early_stopping_params={})
Train an EmbeddingModel (with optional early stopping).

The model is trained on a training set X using the training protocol described in [TWR+16].

Parameters

• X (ndarray (shape [n, 3]) or object of
AmpligraphDatasetAdapter) – Numpy array of training triples OR
handle of Dataset adapter which would help retrieve data.

• early_stopping (bool) – Flag to enable early stopping (default:False)

• early_stopping_params (dictionary) – Dictionary of hyperparameters
for the early stopping heuristics.

The following string keys are supported:

– ’x_valid’: ndarray (shape [n, 3]) or object of AmpligraphDatasetAdapter :
Numpy array of validation triples OR handle of Dataset adapter
which would help retrieve data.

– ’criteria’: string : criteria for early stopping ‘hits10’, ‘hits3’, ‘hits1’ or
‘mrr’(default).

– ’x_filter’: ndarray, shape [n, 3] [Positive triples to use as filter if a
‘filtered’ early] stopping criteria is desired (i.e. filtered-MRR if ‘cri-
teria’:’mrr’). Note this will affect training time (no filter by default).
If the filter has already been set in the adapter, pass True

– ’burn_in’: int : Number of epochs to pass before kicking in early stop-
ping (default: 100).

– check_interval’: int : Early stopping interval after burn-in (default:10).

– ’stop_interval’: int : Stop if criteria is performing worse over n con-
secutive checks (default: 3)

– ’corruption_entities’: List of entities to be used for corruptions. If
‘all’, it uses all entities (default: ‘all’)

– ’corrupt_side’: Specifies which side to corrupt. ‘s’, ‘o’, ‘s+o’, ‘s,o’
(default)

Example: early_stopping_params={x_valid=X['valid'],
'criteria': 'mrr'}

66 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

get_embeddings(entities, embedding_type='entity')
Get the embeddings of entities or relations.

Note: Use ampligraph.utils.create_tensorboard_visualizations() to visualize the
embeddings with TensorBoard.

Parameters

• entities (array-like, dtype=int, shape=[n]) – The entities (or
relations) of interest. Element of the vector must be the original string literals,
and not internal IDs.

• embedding_type (string) – If ‘entity’, entities argument will be con-
sidered as a list of knowledge graph entities (i.e. nodes). If set to ‘relation’, they
will be treated as relation types instead (i.e. predicates).

Returns embeddings – An array of k-dimensional embeddings.

Return type ndarray, shape [n, k]

get_hyperparameter_dict()
Returns hyperparameters of the model.

Returns hyperparam_dict – Dictionary of hyperparameters that were used for training.

Return type dict

predict(X, from_idx=False)
Predict the scores of triples using a trained embedding model. The function returns raw scores generated
by the model.

Note: To obtain probability estimates, calibrate the model with calibrate(), then call
predict_proba().

Parameters

• X (ndarray, shape [n, 3]) – The triples to score.

• from_idx (bool) – If True, will skip conversion to internal IDs. (default: False).

Returns scores_predict – The predicted scores for input triples X.

Return type ndarray, shape [n]

calibrate(X_pos, X_neg=None, positive_base_rate=None, batches_count=100, epochs=50)
Calibrate predictions

The method implements the heuristics described in [TC20], using Platt scaling [P+99].

The calibrated predictions can be obtained with predict_proba() after calibration is done.

Ideally, calibration should be performed on a validation set that was not used to train the embeddings.

There are two modes of operation, depending on the availability of negative triples:

1. Both positive and negative triples are provided via X_pos and X_neg respectively. The optimiza-
tion is done using a second-order method (limited-memory BFGS), therefore no hyperparameter
needs to be specified.

3.3. API 67

AmpliGraph, Release 1.3.2

2. Only positive triples are provided, and the negative triples are generated by corruptions just like
it is done in training or evaluation. The optimization is done using a first-order method (ADAM),
therefore batches_count and epochs must be specified.

Calibration is highly dependent on the base rate of positive triples. Therefore, for mode (2) of operation,
the user is required to provide the positive_base_rate argument. For mode (1), that can be inferred
automatically by the relative sizes of the positive and negative sets, but the user can override that by
providing a value to positive_base_rate.

Defining the positive base rate is the biggest challenge when calibrating without negatives. That depends
on the user choice of which triples will be evaluated during test time. Let’s take WN11 as an example: it
has around 50% positives triples on both the validation set and test set, so naturally the positive base rate is
50%. However, should the user resample it to have 75% positives and 25% negatives, its previous calibra-
tion will be degraded. The user must recalibrate the model now with a 75% positive base rate. Therefore,
this parameter depends on how the user handles the dataset and cannot be determined automatically or a
priori.

Note: Incompatible with large graph mode (i.e. if self.dealing_with_large_graphs=True).

Note: [TC20] calibration experiments available here.

Parameters

• X_pos (ndarray (shape [n, 3])) – Numpy array of positive triples.

• X_neg (ndarray (shape [n, 3])) – Numpy array of negative triples.

If None, the negative triples are generated via corruptions and the user must provide
a positive base rate instead.

• positive_base_rate (float) – Base rate of positive statements.

For example, if we assume there is a fifty-fifty chance of any query to be true, the
base rate would be 50%.

If X_neg is provided and this is None, the relative sizes of X_pos and X_neg
will be used to determine the base rate. For example, if we have 50 positive triples
and 200 negative triples, the positive base rate will be assumed to be 50/(50+200)
= 1/5 = 0.2.

This must be a value between 0 and 1.

• batches_count (int) – Number of batches to complete one epoch of the Platt
scaling training. Only applies when X_neg is None.

• epochs (int) – Number of epochs used to train the Platt scaling model. Only
applies when X_neg is None.

68 Chapter 3. How to Cite

https://github.com/Accenture/AmpliGraph/tree/paper/ICLR-20/experiments/ICLR-20

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss, log_loss
>>> from scipy.special import expit
>>>
>>> from ampligraph.datasets import load_wn11
>>> from ampligraph.latent_features.models import TransE
>>>
>>> X = load_wn11()
>>> X_valid_pos = X['valid'][X['valid_labels']]
>>> X_valid_neg = X['valid'][~X['valid_labels']]
>>>
>>> model = TransE(batches_count=64, seed=0, epochs=500, k=100, eta=20,
>>> optimizer='adam', optimizer_params={'lr':0.0001},
>>> loss='pairwise', verbose=True)
>>>
>>> model.fit(X['train'])
>>>
>>> # Raw scores
>>> scores = model.predict(X['test'])
>>>
>>> # Calibrate with positives and negatives
>>> model.calibrate(X_valid_pos, X_valid_neg, positive_base_rate=None)
>>> probas_pos_neg = model.predict_proba(X['test'])
>>>
>>> # Calibrate with just positives and base rate of 50%
>>> model.calibrate(X_valid_pos, positive_base_rate=0.5)
>>> probas_pos = model.predict_proba(X['test'])
>>>
>>> # Calibration evaluation with the Brier score loss (the smaller, the
→˓better)
>>> print("Brier scores")
>>> print("Raw scores:", brier_score_loss(X['test_labels'], expit(scores)))
>>> print("Positive and negative calibration:", brier_score_loss(X['test_
→˓labels'], probas_pos_neg))
>>> print("Positive only calibration:", brier_score_loss(X['test_labels'],
→˓probas_pos))
Brier scores
Raw scores: 0.4925058891371126
Positive and negative calibration: 0.20434617882733366
Positive only calibration: 0.22597599585144656

predict_proba(X)
Predicts probabilities using the Platt scaling model (after calibration).

Model must be calibrated beforehand with the calibrate method.

Parameters X (ndarray (shape [n, 3])) – Numpy array of triples to be evaluated.

Returns probas – Probability of each triple to be true according to the Platt scaling calibra-
tion.

Return type ndarray (shape [n])

abstract _fn(e_s, e_p, e_o)
The scoring function of the model.

Assigns a score to a list of triples, with a model-specific strategy. Triples are passed as lists of subject,
predicate, object embeddings. This function must be overridden by every model to return corresponding

3.3. API 69

AmpliGraph, Release 1.3.2

score.

Parameters

• e_s (Tensor, shape [n]) – The embeddings of a list of subjects.

• e_p (Tensor, shape [n]) – The embeddings of a list of predicates.

• e_o (Tensor, shape [n]) – The embeddings of a list of objects.

Returns score – The operation corresponding to the scoring function.

Return type TensorFlow operation

_initialize_parameters()
Initialize parameters of the model.

This function creates and initializes entity and relation embeddings (with size k). If the graph is large, then
it loads only the required entity embeddings (max:batch_size*2) and all relation embeddings. Overload
this function if the parameters needs to be initialized differently.

_get_model_loss(dataset_iterator)
Get the current loss including loss due to regularization. This function must be overridden if the model
uses combination of different losses(eg: VAE).

Parameters dataset_iterator (tf.data.Iterator) – Dataset iterator.

Returns loss – The loss value that must be minimized.

Return type tf.Tensor

get_embedding_model_params(output_dict)
Save the model parameters in the dictionary.

Parameters output_dict (dictionary) – Dictionary of saved params. It’s the duty
of the model to save all the variables correctly, so that it can be used for restoring later.

restore_model_params(in_dict)
Load the model parameters from the input dictionary.

Parameters in_dict (dictionary) – Dictionary of saved params. It’s the duty of the
model to load the variables correctly.

_save_trained_params()
After model fitting, save all the trained parameters in trained_model_params in some order. The order
would be useful for loading the model. This method must be overridden if the model has any other
parameters (apart from entity-relation embeddings).

_load_model_from_trained_params()
Load the model from trained params. While restoring make sure that the order of loaded parameters
match the saved order. It’s the duty of the embedding model to load the variables correctly. This method
must be overridden if the model has any other parameters (apart from entity-relation embeddings). This
function also set’s the evaluation mode to do lazy loading of variables based on the number of distinct
entities present in the graph.

_initialize_early_stopping()
Initializes and creates evaluation graph for early stopping.

_perform_early_stopping_test(epoch)
Performs regular validation checks and stop early if the criteria is achieved.

Parameters epoch (int) – current training epoch.

Returns stopped – Flag to indicate if the early stopping criteria is achieved.

70 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Return type bool

configure_evaluation_protocol(config=None)
Set the configuration for evaluation

Parameters config (dictionary) – Dictionary of parameters for evaluation configura-
tion. Can contain following keys:

• corruption_entities: List of entities to be used for corruptions. If all, it uses all
entities (default: all)

• corrupt_side: Specifies which side to corrupt. s, o, s+o, s,o (default) In ‘s,o’
mode subject and object corruptions are generated at once but ranked separately
for speed up (default: False).

set_filter_for_eval()
Configures to use filter

_initialize_eval_graph(mode='test')
Initialize the evaluation graph.

Parameters mode (string) – Indicates which data generator to use.

end_evaluation()
End the evaluation and close the Tensorflow session.

Loss

class ampligraph.latent_features.Loss(eta, hyperparam_dict, verbose=False)
Abstract class for loss function.

Methods

__init__(eta, hyperparam_dict[, verbose]) Initialize Loss.
get_state(param_name) Get the state value.
_init_hyperparams(hyperparam_dict) Initializes the hyperparameters needed by the algo-

rithm.
_inputs_check(scores_pos, scores_neg) Creates any dependencies that need to be checked

before performing loss computations
apply(scores_pos, scores_neg) Interface to external world.
_apply(scores_pos, scores_neg) Apply the loss function.

__init__(eta, hyperparam_dict, verbose=False)
Initialize Loss.

Parameters

• eta (int) – number of negatives

• hyperparam_dict (dict) – dictionary of hyperparams. (Keys are described
in the hyperparameters section)

get_state(param_name)
Get the state value.

Parameters param_name (string) – Name of the state for which one wants to query
the value.

3.3. API 71

AmpliGraph, Release 1.3.2

Returns The value of the corresponding state.

Return type param_value

_init_hyperparams(hyperparam_dict)
Initializes the hyperparameters needed by the algorithm.

Parameters hyperparam_dict (dictionary) – Consists of key value pairs. The Loss
will check the keys to get the corresponding params.

_inputs_check(scores_pos, scores_neg)
Creates any dependencies that need to be checked before performing loss computations

Parameters

• scores_pos (tf.Tensor) – A tensor of scores assigned to positive statements.

• scores_neg (tf.Tensor) – A tensor of scores assigned to negative state-
ments.

apply(scores_pos, scores_neg)
Interface to external world. This function does the input checks, preprocesses input and finally applies
loss function.

Parameters

• scores_pos (tf.Tensor) – A tensor of scores assigned to positive statements.

• scores_neg (tf.Tensor) – A tensor of scores assigned to negative state-
ments.

Returns loss – The loss value that must be minimized.

Return type tf.Tensor

_apply(scores_pos, scores_neg)
Apply the loss function. Every inherited class must implement this function. (All the TF code must go in
this function.)

Parameters

• scores_pos (tf.Tensor) – A tensor of scores assigned to positive statements.

• scores_neg (tf.Tensor) – A tensor of scores assigned to negative state-
ments.

Returns loss – The loss value that must be minimized.

Return type tf.Tensor

Regularizer

class ampligraph.latent_features.Regularizer(hyperparam_dict, verbose=False)
Abstract class for Regularizer.

72 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Methods

__init__(hyperparam_dict[, verbose]) Initialize the regularizer.
get_state(param_name) Get the state value.
_init_hyperparams(hyperparam_dict) Initializes the hyperparameters needed by the algo-

rithm.
apply(trainable_params) Interface to external world.
_apply(trainable_params) Apply the regularization function.

__init__(hyperparam_dict, verbose=False)
Initialize the regularizer.

Parameters hyperparam_dict (dict) – dictionary of hyperparams (Keys are described
in the hyperparameters section)

get_state(param_name)
Get the state value.

Parameters param_name (string) – name of the state for which one wants to query the
value

Returns the value of the corresponding state

Return type param_value

_init_hyperparams(hyperparam_dict)
Initializes the hyperparameters needed by the algorithm.

Parameters hyperparam_dict (dictionary) – Consists of key value pairs. The reg-
ularizer will check the keys to get the corresponding params

apply(trainable_params)
Interface to external world. This function performs input checks, input pre-processing, and and applies
the loss function.

Parameters trainable_params (list, shape [n]) – List of trainable params that
should be reqularized

Returns loss – Regularization Loss

Return type tf.Tensor

_apply(trainable_params)
Apply the regularization function. Every inherited class must implement this function.

(All the TF code must go in this function.)

Parameters trainable_params (list, shape [n]) – List of trainable params that
should be reqularized

Returns loss – Regularization Loss

Return type tf.Tensor

3.3. API 73

AmpliGraph, Release 1.3.2

Initializer

class ampligraph.latent_features.Initializer(initializer_params={}, verbose=True,
seed=0)

Abstract class for initializer .

Methods

__init__([initializer_params, verbose, seed]) Initialize the Class
_init_hyperparams(hyperparam_dict) Initializes the hyperparameters.
_get_tf_initializer([in_shape, out_shape,
. . .])

Create a tensorflow node for initializer

_get_np_initializer([in_shape, out_shape,
. . .])

Create an initialized numpy array

_display_params() Display the parameter values
get_entity_initializer([in_shape, . . .]) Initializer for entity embeddings
get_relation_initializer([in_shape, . . .]) Initializer for relation embeddings

__init__(initializer_params={}, verbose=True, seed=0)
Initialize the Class

Parameters

• initializer_params (dict) – dictionary of hyperparams that would be used
by the initializer.

• verbose (bool) – set/reset verbose mode

• seed (int/np.random.RandomState) – random state for random number
generator

_init_hyperparams(hyperparam_dict)
Initializes the hyperparameters.

Parameters hyperparam_dict (dictionary) – Consists of key value pairs. The ini-
tializer will check the keys to get the corresponding params

_get_tf_initializer(in_shape=None, out_shape=None, concept='e')
Create a tensorflow node for initializer

Parameters

• in_shape (int) – number of inputs to the layer (fan in)

• out_shape (int) – number of outputs of the layer (fan out)

• concept (char) – concept type (e for entity, r for relation)

Returns initializer_instance

Return type An Initializer instance.

_get_np_initializer(in_shape=None, out_shape=None, concept='e')
Create an initialized numpy array

Parameters

• in_shape (int) – number of inputs to the layer (fan in)

• out_shape (int) – number of outputs of the layer (fan out)

74 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• concept (char) – concept type (e for entity, r for relation)

Returns initialized_values – Initialized weights

Return type n-d array

_display_params()
Display the parameter values

get_entity_initializer(in_shape=None, out_shape=None, init_type='tf')
Initializer for entity embeddings

Parameters

• in_shape (int) – number of inputs to the layer (fan in)

• out_shape (int) – number of outputs of the layer (fan out)

• init_type (string) – Type of initializer (‘tf’ for tensorflow, ‘np’ for numpy)

Returns initialized_values – Weights initializer

Return type tf.Op or n-d array

get_relation_initializer(in_shape=None, out_shape=None, init_type='tf')
Initializer for relation embeddings

Parameters

• in_shape (int) – number of inputs to the layer (fan in)

• out_shape (int) – number of outputs of the layer (fan out)

• init_type (string) – Type of initializer (‘tf’ for tensorflow, ‘np’ for numpy)

Returns initialized_values – Weights initializer

Return type tf.Op or n-d array

Scoring functions

Existing models propose scoring functions that combine the embeddings e𝑠, r𝑝, e𝑜 ∈ ℛ𝑘 of the subject, predicate, and
object of a triple 𝑡 = (𝑠, 𝑝, 𝑜) according to different intuitions:

• TransE [BUGD+13] relies on distances. The scoring function computes a similarity between the embedding
of the subject translated by the embedding of the predicate and the embedding of the object, using the 𝐿1 or 𝐿2

norm || · ||:

𝑓𝑇𝑟𝑎𝑛𝑠𝐸 = −||e𝑠 + r𝑝 − e𝑜||𝑛

• DistMult [YYH+14] uses the trilinear dot product:

𝑓𝐷𝑖𝑠𝑡𝑀𝑢𝑙𝑡 = ⟨r𝑝, e𝑠, e𝑜⟩

• ComplEx [TWR+16] extends DistMult with the Hermitian dot product:

𝑓𝐶𝑜𝑚𝑝𝑙𝐸𝑥 = 𝑅𝑒(⟨r𝑝, e𝑠, e𝑜⟩)

• HolE [NRP+16] uses circular correlation (denoted by ⊗):

𝑓𝐻𝑜𝑙𝐸 = w𝑟 · (e𝑠 ⊗ e𝑜) =
1

𝑘
ℱ(w𝑟) · (ℱ(e𝑠)⊙ℱ(e𝑜))

• ConvE [DMSR18] uses convolutional layers (𝑔 is a non-linear activation function, * is the linear convolution
operator, 𝑣𝑒𝑐 indicates 2D reshaping):

3.3. API 75

AmpliGraph, Release 1.3.2

𝑓𝐶𝑜𝑛𝑣𝐸 = ⟨𝜎 (𝑣𝑒𝑐 (𝑔 ([e𝑠; r𝑝] * Ω))W)) e𝑜⟩

• ConvKB [NNNP18] uses convolutional layers and a dot product:

𝑓𝐶𝑜𝑛𝑣𝐾𝐵 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑔 ([e𝑠, r𝑝, e𝑜]) * Ω)) ·𝑊

Loss Functions

AmpliGraph includes a number of loss functions commonly used in literature. Each function can be used with any of
the implemented models. Loss functions are passed to models as hyperparameter, and they can be thus used during
model selection.

PairwiseLoss(eta[, loss_params, verbose]) Pairwise, max-margin loss.
AbsoluteMarginLoss(eta[, loss_params, ver-
bose])

Absolute margin , max-margin loss.

SelfAdversarialLoss(eta[, loss_params, ver-
bose])

Self adversarial sampling loss.

NLLLoss(eta[, loss_params, verbose]) Negative log-likelihood loss.
NLLMulticlass(eta[, loss_params, verbose]) Multiclass NLL Loss.
BCELoss(eta[, loss_params, verbose]) Binary Cross Entropy Loss.

PairwiseLoss

class ampligraph.latent_features.PairwiseLoss(eta, loss_params=None, verbose=False)
Pairwise, max-margin loss.

Introduced in [BUGD+13].

ℒ(Θ) =
∑︁
𝑡+∈𝒢

∑︁
𝑡−∈𝒞

𝑚𝑎𝑥(0, [𝛾 + 𝑓𝑚𝑜𝑑𝑒𝑙(𝑡
−; Θ)− 𝑓𝑚𝑜𝑑𝑒𝑙(𝑡

+; Θ)])

where 𝛾 is the margin, 𝒢 is the set of positives, 𝒞 is the set of corruptions, 𝑓𝑚𝑜𝑑𝑒𝑙(𝑡; Θ) is the model-specific
scoring function.

Methods

__init__(eta[, loss_params, verbose]) Initialize Loss.

__init__(eta, loss_params=None, verbose=False)
Initialize Loss.

Parameters

• eta (int) – Number of negatives.

• loss_params (dict) – Dictionary of loss-specific hyperparams:

– ’margin’: (float). Margin to be used in pairwise loss computation (default: 1)

Example: loss_params={'margin': 1}

76 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

AbsoluteMarginLoss

class ampligraph.latent_features.AbsoluteMarginLoss(eta, loss_params=None, ver-
bose=False)

Absolute margin , max-margin loss.

Introduced in [HOSM17].

ℒ(Θ) =
∑︁
𝑡+∈𝒢

∑︁
𝑡−∈𝒞

𝑓𝑚𝑜𝑑𝑒𝑙(𝑡
−; Θ)−𝑚𝑎𝑥(0, [𝛾 − 𝑓𝑚𝑜𝑑𝑒𝑙(𝑡

+; Θ)])

where 𝛾 is the margin, 𝒢 is the set of positives, 𝒞 is the set of corruptions, 𝑓𝑚𝑜𝑑𝑒𝑙(𝑡; Θ) is the model-specific
scoring function.

Methods

__init__(eta[, loss_params, verbose]) Initialize Loss

__init__(eta, loss_params=None, verbose=False)
Initialize Loss

Parameters

• eta (int) – Number of negatives.

• loss_params (dict) – Dictionary of loss-specific hyperparams:

– ’margin’: float. Margin to be used in pairwise loss computation (default:1)

Example: loss_params={'margin': 1}

SelfAdversarialLoss

class ampligraph.latent_features.SelfAdversarialLoss(eta, loss_params=None, ver-
bose=False)

Self adversarial sampling loss.

Introduced in [SDNT19].

ℒ = −𝑙𝑜𝑔 𝜎(𝛾 + 𝑓𝑚𝑜𝑑𝑒𝑙(s,o))−
𝑛∑︁

𝑖=1

𝑝(ℎ
′

𝑖, 𝑟, 𝑡
′

𝑖) 𝑙𝑜𝑔 𝜎(−𝑓𝑚𝑜𝑑𝑒𝑙(s
′

𝑖,o
′

𝑖)− 𝛾)

where s,o ∈ ℛ𝑘 are the embeddings of the subject and object of a triple 𝑡 = (𝑠, 𝑟, 𝑜), 𝛾 is the margin, 𝜎 the
sigmoid function, and 𝑝(𝑠

′

𝑖, 𝑟, 𝑜
′

𝑖) is the negatives sampling distribution which is defined as:

𝑝(𝑠′𝑗 , 𝑟, 𝑜
′
𝑗 |{(𝑠𝑖, 𝑟𝑖, 𝑜𝑖)}) =

exp𝛼 𝑓𝑚𝑜𝑑𝑒𝑙(s
′
j,o

′
j)∑︀

𝑖 exp𝛼 𝑓𝑚𝑜𝑑𝑒𝑙(s′i,o
′
i)

where 𝛼 is the temperature of sampling, 𝑓𝑚𝑜𝑑𝑒𝑙 is the scoring function of the desired embeddings model.

3.3. API 77

AmpliGraph, Release 1.3.2

Methods

__init__(eta[, loss_params, verbose]) Initialize Loss

__init__(eta, loss_params=None, verbose=False)
Initialize Loss

Parameters

• eta (int) – number of negatives

• loss_params (dict) – Dictionary of loss-specific hyperparams:

– ’margin’: (float). Margin to be used for loss computation (default: 1)

– ’alpha’ : (float). Temperature of sampling (default:0.5)

Example: loss_params={'margin': 1, 'alpha': 0.5}

NLLLoss

class ampligraph.latent_features.NLLLoss(eta, loss_params=None, verbose=False)
Negative log-likelihood loss.

As described in [TWR+16].

ℒ(Θ) =
∑︁

𝑡∈𝒢∪𝒞
𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(−𝑦 𝑓𝑚𝑜𝑑𝑒𝑙(𝑡; Θ)))

where 𝑦 ∈ −1, 1 is the label of the statement, 𝒢 is the set of positives, 𝒞 is the set of corruptions, 𝑓𝑚𝑜𝑑𝑒𝑙(𝑡; Θ)
is the model-specific scoring function.

Methods

__init__(eta[, loss_params, verbose]) Initialize Loss.

__init__(eta, loss_params=None, verbose=False)
Initialize Loss.

Parameters

• eta (int) – Number of negatives.

• loss_params (dict) – Dictionary of hyperparams. No hyperparameters are
required for this loss.

78 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

NLLMulticlass

class ampligraph.latent_features.NLLMulticlass(eta, loss_params=None, ver-
bose=False)

Multiclass NLL Loss.

Introduced in [aC15] where both the subject and objects are corrupted (to use it in this way pass corrupt_sides
= [‘s’, ‘o’] to embedding_model_params) .

This loss was re-engineered in [KBK17] where only the object was corrupted to get improved performance (to
use it in this way pass corrupt_sides = ‘o’ to embedding_model_params).

ℒ(𝒳) = −
∑︁

𝑥𝑒1,𝑒2,𝑟𝑘
∈𝑋

𝑙𝑜𝑔 𝑝(𝑒2|𝑒1, 𝑟𝑘)−
∑︁

𝑥𝑒1,𝑒2,𝑟𝑘
∈𝑋

𝑙𝑜𝑔 𝑝(𝑒1|𝑟𝑘, 𝑒2)

Examples

>>> from ampligraph.latent_features import TransE
>>> model = TransE(batches_count=1, seed=555, epochs=20, k=10,
>>> embedding_model_params={'corrupt_sides':['s', 'o']},
>>> loss='multiclass_nll', loss_params={})

Methods

__init__(eta[, loss_params, verbose]) Initialize Loss

__init__(eta, loss_params=None, verbose=False)
Initialize Loss

Parameters

• eta (int) – number of negatives

• loss_params (dict) – Dictionary of loss-specific hyperparams:

BCELoss

class ampligraph.latent_features.BCELoss(eta, loss_params={}, verbose=False)
Binary Cross Entropy Loss.

ℒ = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1− 𝑦𝑖) · 𝑙𝑜𝑔(1− 𝑝(𝑦𝑖))

3.3. API 79

AmpliGraph, Release 1.3.2

Examples

>>> from ampligraph.latent_features.models import ConvE
>>> model = ConvE(batches_count=1, seed=555, epochs=20, k=10, loss='bce', loss_
→˓params={})

Methods

__init__(eta[, loss_params, verbose]) Initialize Loss

__init__(eta, loss_params={}, verbose=False)
Initialize Loss

Parameters loss_params (dict) – Dictionary of loss-specific hyperparams:

Regularizers

AmpliGraph includes a number of regularizers that can be used with the loss function. LPRegularizer supports
L1, L2, and L3.

LPRegularizer([regularizer_params, verbose]) Performs LP regularization

LPRegularizer

class ampligraph.latent_features.LPRegularizer(regularizer_params=None, ver-
bose=False)

Performs LP regularization

ℒ(𝑅𝑒𝑔) =

𝑛∑︁
𝑖=1

𝜆𝑖* | 𝑤𝑖 |𝑝

where n is the number of model parameters, 𝑝 ∈ 1, 2, 3 is the p-norm and 𝜆 is the regularization weight.

For example, if 𝑝 = 1 the function will perform L1 regularization. L2 regularization is obtained with 𝑝 = 2.

The nuclear 3-norm proposed in the ComplEx-N3 paper [LUO18] can be obtained with
regularizer_params={'p': 3}.

Methods

__init__([regularizer_params, verbose]) Initializes the hyperparameters needed by the algo-
rithm.

__init__(regularizer_params=None, verbose=False)
Initializes the hyperparameters needed by the algorithm.

Parameters regularizer_params (dictionary) – Consists of key-value pairs. The
regularizer will check the keys to get the corresponding params:

• ’lambda’: (float). Weight of regularization loss for each parameter (default: 1e-5)

80 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• ’p’: (int): norm (default: 2)

Example: regularizer_params={'lambda': 1e-5, 'p': 1}

Initializers

AmpliGraph includes a number of initializers that can be used to initialize the embeddings. They can be passed as
hyperparameter, and they can be thus used during model selection.

RandomNormal([initializer_params, verbose, seed]) Initializes from a normal distribution with specified
mean and std

RandomUniform([initializer_params, verbose, . . .]) Initializes from a uniform distribution with specified
low and high

Xavier([initializer_params, verbose, seed]) Follows the xavier strategy for initialization of layers
[GB10].

Constant([initializer_params, verbose, seed]) Initializes with the constant values provided by the user

RandomNormal

class ampligraph.latent_features.RandomNormal(initializer_params={}, verbose=True,
seed=0)

Initializes from a normal distribution with specified mean and std

𝒩 (𝜇, 𝜎)

Methods

__init__([initializer_params, verbose, seed]) Initialize the Random Normal initialization strategy

__init__(initializer_params={}, verbose=True, seed=0)
Initialize the Random Normal initialization strategy

Parameters

• initializer_params (dict) – Consists of key-value pairs. The initializer
will check the keys to get the corresponding params:

– mean: (float). Mean of the weights(default: 0)

– std: (float): std of the weights (default: 0.05)

Example: initializer_params={'mean': 0, 'std': 0.01}

• verbose (bool) – Enable/disable verbose mode

• seed (int/np.random.RandomState) – random state for random number
generator

3.3. API 81

AmpliGraph, Release 1.3.2

RandomUniform

class ampligraph.latent_features.RandomUniform(initializer_params={}, verbose=True,
seed=0)

Initializes from a uniform distribution with specified low and high

𝒰(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)

Methods

__init__([initializer_params, verbose, seed]) Initialize the Uniform initialization strategy

__init__(initializer_params={}, verbose=True, seed=0)
Initialize the Uniform initialization strategy

Parameters

• initializer_params (dict) – Consists of key-value pairs. The initializer
will check the keys to get the corresponding params:

– low: (float). lower bound for uniform number (default: -0.05)

– high: (float): upper bound for uniform number (default: 0.05)

Example: initializer_params={'low': 0, 'high': 0.01}

• verbose (bool) – Enable/disable verbose mode

• seed (int/np.random.RandomState) – random state for random number
generator

Xavier

class ampligraph.latent_features.Xavier(initializer_params={}, verbose=True, seed=0)
Follows the xavier strategy for initialization of layers [GB10].

If uniform is set to True, then it initializes the layer from the following uniform distribution:

𝒰(−
√︂

6

𝑓𝑎𝑛𝑖𝑛 + 𝑓𝑎𝑛𝑜𝑢𝑡
,

√︂
6

𝑓𝑎𝑛𝑖𝑛 + 𝑓𝑎𝑛𝑜𝑢𝑡
)

If uniform is False, then it initializes the layer from the following normal distribution:

𝒩 (0,

√︂
2

𝑓𝑎𝑛𝑖𝑛 + 𝑓𝑎𝑛𝑜𝑢𝑡
)

where 𝑓𝑎𝑛𝑖𝑛 and 𝑓𝑎𝑛𝑜𝑢𝑡 are number of input units and output units of the layer respectively.

82 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Methods

__init__([initializer_params, verbose, seed]) Initialize the Xavier strategy

__init__(initializer_params={}, verbose=True, seed=0)
Initialize the Xavier strategy

Parameters

• initializer_params (dict) – Consists of key-value pairs. The initializer
will check the keys to get the corresponding params:

– uniform: (bool). indicates whether to use Xavier Uniform or Xavier Normal
initializer.

Example: initializer_params={'uniform': False}

• verbose (bool) – Enable/disable verbose mode

• seed (int/np.random.RandomState) – random state for random number
generator

Constant

class ampligraph.latent_features.Constant(initializer_params={}, verbose=True, seed=0)
Initializes with the constant values provided by the user

Methods

__init__([initializer_params, verbose, seed]) Initialize the the constant values provided by the user

__init__(initializer_params={}, verbose=True, seed=0)
Initialize the the constant values provided by the user

Parameters

• initializer_params (dict) – Consists of key-value pairs. The initializer
will check the keys to get the corresponding params:

– entity: (np.ndarray.float32). Initial values for entity embeddings

– relation: (np.ndarray.float32). Initial values for relation embeddings

Example: initializer_params={'entity': ent_init_value,
'relation': rel_init_value}

• verbose (bool) – Enable/disable verbose mode

• seed (int/np.random.RandomState) – random state for random number
generator

3.3. API 83

AmpliGraph, Release 1.3.2

Optimizers

The goal of the optimization procedure is learning optimal embeddings, such that the scoring function is able to assign
high scores to positive statements and low scores to statements unlikely to be true.

We support SGD-based optimizers provided by TensorFlow, by setting the optimizer argument in a model initial-
izer. Best results are currently obtained with Adam.

AdamOptimizer(optimizer_params, batches_count) Wrapper around Adam Optimizer
AdagradOptimizer(optimizer_params,
batches_count)

Wrapper around adagrad optimizer

SGDOptimizer(optimizer_params, batches_count) Wrapper around SGD Optimizer
MomentumOptimizer(optimizer_params, . . . [, . . .]) Wrapper around Momentum Optimizer

AdamOptimizer

class ampligraph.latent_features.AdamOptimizer(optimizer_params, batches_count, ver-
bose=False)

Wrapper around Adam Optimizer

Methods

__init__(optimizer_params, batches_count[,
. . .])

Initialize the Optimizer

minimize(loss) Create an optimizer to minimize the model loss
update_feed_dict(feed_dict, batch_num,
epoch_num)

Fills values of placeholders created by the optimiz-
ers.

__init__(optimizer_params, batches_count, verbose=False)
Initialize the Optimizer

Parameters

• optimizer_params (dict) – Consists of key-value pairs. The optimizer will
check the keys to get the corresponding params:

– ’lr’: (float). Learning Rate (default: 0.0005)

Example: optimizer_params={'lr': 0.001}

• batches_count (int) – number of batches in an epoch

• verbose (bool) – Enable/disable verbose mode

minimize(loss)
Create an optimizer to minimize the model loss

Parameters loss (tf.Tensor) – Node which needs to be evaluated for computing the
model loss.

Returns train – Node that needs to be evaluated for minimizing the loss during training

Return type tf.Operation

update_feed_dict(feed_dict, batch_num, epoch_num)
Fills values of placeholders created by the optimizers.

84 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Parameters

• feed_dict (dict) – Dictionary that would be passed while optimizing the
model loss to sess.run.

• batch_num (int) – current batch number

• epoch_num (int) – current epoch number

AdagradOptimizer

class ampligraph.latent_features.AdagradOptimizer(optimizer_params, batches_count,
verbose=False)

Wrapper around adagrad optimizer

Methods

__init__(optimizer_params, batches_count[,
. . .])

Initialize the Optimizer

minimize(loss) Create an optimizer to minimize the model loss
update_feed_dict(feed_dict, batch_num,
epoch_num)

Fills values of placeholders created by the optimiz-
ers.

__init__(optimizer_params, batches_count, verbose=False)
Initialize the Optimizer

Parameters

• optimizer_params (dict) – Consists of key-value pairs. The optimizer will
check the keys to get the corresponding params:

– ’lr’: (float). Learning Rate (default: 0.0005)

Example: optimizer_params={'lr': 0.001}

• batches_count (int) – number of batches in an epoch

• verbose (bool) – Enable/disable verbose mode

minimize(loss)
Create an optimizer to minimize the model loss

Parameters loss (tf.Tensor) – Node which needs to be evaluated for computing the
model loss.

Returns train – Node that needs to be evaluated for minimizing the loss during training

Return type tf.Operation

update_feed_dict(feed_dict, batch_num, epoch_num)
Fills values of placeholders created by the optimizers.

Parameters

• feed_dict (dict) – Dictionary that would be passed while optimizing the
model loss to sess.run.

• batch_num (int) – current batch number

• epoch_num (int) – current epoch number

3.3. API 85

AmpliGraph, Release 1.3.2

SGDOptimizer

class ampligraph.latent_features.SGDOptimizer(optimizer_params, batches_count, ver-
bose=False)

Wrapper around SGD Optimizer

Methods

__init__(optimizer_params, batches_count[,
. . .])

Initialize the Optimizer

minimize(loss) Create an optimizer to minimize the model loss
update_feed_dict(feed_dict, batch_num,
epoch_num)

Fills values of placeholders created by the optimiz-
ers.

__init__(optimizer_params, batches_count, verbose=False)
Initialize the Optimizer

Parameters

• optimizer_params (dict) – Consists of key-value pairs. The optimizer will
check the keys to get the corresponding params:

– ’lr’: (float). Learning Rate upper bound (default: 0.0005)

– ’decay_cycle’: (int). Cycle of epoch over which to decay (default: 0)

– ’end_lr’: (float). Learning Rate lower bound (default: 1e-8)

– ’cosine_decay’: (bool). Use cosine decay or to fixed rate decay (default:
False)

– ’expand_factor’: (float). Expand the decay cycle length by this factor after
each cycle (default: 1)

– ’decay_lr_rate’: (float). Decay factor to decay the start lr after each cycle
(default: 2)

Example: optimizer_params={'lr': 0.01,
'decay_cycle':30, 'end_lr':0.0001, 'sine_decay':True}

• batches_count (int) – number of batches in an epoch

• verbose (bool) – Enable/disable verbose mode

minimize(loss)
Create an optimizer to minimize the model loss

Parameters loss (tf.Tensor) – Node which needs to be evaluated for computing the
model loss.

Returns train – Node that needs to be evaluated for minimizing the loss during training

Return type tf.Operation

update_feed_dict(feed_dict, batch_num, epoch_num)
Fills values of placeholders created by the optimizers.

Parameters

• feed_dict (dict) – Dictionary that would be passed while optimizing the
model loss to sess.run.

86 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• batch_num (int) – current batch number

• epoch_num (int) – current epoch number

MomentumOptimizer

class ampligraph.latent_features.MomentumOptimizer(optimizer_params, batches_count,
verbose=False)

Wrapper around Momentum Optimizer

Methods

__init__(optimizer_params, batches_count[,
. . .])

Initialize the Optimizer

minimize(loss) Create an optimizer to minimize the model loss
update_feed_dict(feed_dict, batch_num,
epoch_num)

Fills values of placeholders created by the optimiz-
ers.

__init__(optimizer_params, batches_count, verbose=False)
Initialize the Optimizer

Parameters

• optimizer_params (dict) – Consists of key-value pairs. The optimizer will
check the keys to get the corresponding params:

– ’lr’: (float). Learning Rate (default: 0.0005)

– ’momentum’: (float). Momentum (default: 0.9)

Example: optimizer_params={'lr': 0.001, 'momentum':0.
90}

• batches_count (int) – number of batches in an epoch

• verbose (bool) – Enable/disable verbose mode

minimize(loss)
Create an optimizer to minimize the model loss

Parameters loss (tf.Tensor) – Node which needs to be evaluated for computing the
model loss.

Returns train – Node that needs to be evaluated for minimizing the loss during training

Return type tf.Operation

update_feed_dict(feed_dict, batch_num, epoch_num)
Fills values of placeholders created by the optimizers.

Parameters

• feed_dict (dict) – Dictionary that would be passed while optimizing the
model loss to sess.run.

• batch_num (int) – current batch number

• epoch_num (int) – current epoch number

3.3. API 87

AmpliGraph, Release 1.3.2

Saving/Restoring Models

Models can be saved and restored from disk. This is useful to avoid re-training a model.

More details in the utils module.

3.3.3 Evaluation

The module includes performance metrics for neural graph embeddings models, along with model selection routines,
negatives generation, and an implementation of the learning-to-rank-based evaluation protocol used in literature.

Metrics

Learning-to-rank metrics to evaluate the performance of neural graph embedding models.

rank_score(y_true, y_pred[, pos_lab]) Rank of a triple
mrr_score(ranks) Mean Reciprocal Rank (MRR)
mr_score(ranks) Mean Rank (MR)
hits_at_n_score(ranks, n) Hits@N

rank_score

ampligraph.evaluation.rank_score(y_true, y_pred, pos_lab=1)
Rank of a triple

The rank of a positive element against a list of negatives.
𝑟𝑎𝑛𝑘(𝑠,𝑝,𝑜)𝑖

Parameters

• y_true (ndarray, shape [n]) – An array of binary labels. The array only con-
tains one positive.

• y_pred (ndarray, shape [n]) – An array of scores, for the positive element
and the n-1 negatives.

• pos_lab (int) – The value of the positive label (default = 1).

Returns rank – The rank of the positive element against the negatives.

Return type int

Examples

>>> import numpy as np
>>> from ampligraph.evaluation.metrics import rank_score
>>> y_pred = np.array([.434, .65, .21, .84])
>>> y_true = np.array([0, 0, 1, 0])
>>> rank_score(y_true, y_pred)
4

88 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

mrr_score

ampligraph.evaluation.mrr_score(ranks)
Mean Reciprocal Rank (MRR)

The function computes the mean of the reciprocal of elements of a vector of rankings ranks.

It is used in conjunction with the learning to rank evaluation protocol of ampligraph.evaluation.
evaluate_performance().

It is formally defined as follows:

𝑀𝑅𝑅 =
1

|𝑄|

|𝑄|∑︁
𝑖=1

1

𝑟𝑎𝑛𝑘(𝑠,𝑝,𝑜)𝑖

where 𝑄 is a set of triples and (𝑠, 𝑝, 𝑜) is a triple ∈ 𝑄.

Note: This metric is similar to mean rank (MR) ampligraph.evaluation.mr_score(). Instead of
averaging ranks, it averages their reciprocals. This is done to obtain a metric which is more robust to outliers.

Consider the following example. Each of the two positive triples identified by * are ranked against four corrup-
tions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple ranks first. The
resulting MRR is:

s p o score rank
Jack born_in Ireland 0.789 1
Jack born_in Italy 0.753 2 *
Jack born_in Germany 0.695 3
Jack born_in China 0.456 4
Jack born_in Thomas 0.234 5

s p o score rank
Jack friend_with Thomas 0.901 1 *
Jack friend_with China 0.345 2
Jack friend_with Italy 0.293 3
Jack friend_with Ireland 0.201 4
Jack friend_with Germany 0.156 5

MRR=0.75

Parameters ranks (ndarray or list, shape [n] or [n,2]) – Input ranks of n test
statements.

Returns mrr_score – The MRR score

Return type float

3.3. API 89

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from ampligraph.evaluation.metrics import mrr_score
>>> rankings = np.array([1, 12, 6, 2])
>>> mrr_score(rankings)
0.4375

mr_score

ampligraph.evaluation.mr_score(ranks)
Mean Rank (MR)

The function computes the mean of of a vector of rankings ranks.

It can be used in conjunction with the learning to rank evaluation protocol of ampligraph.evaluation.
evaluate_performance().

It is formally defined as follows:

𝑀𝑅 =
1

|𝑄|

|𝑄|∑︁
𝑖=1

𝑟𝑎𝑛𝑘(𝑠,𝑝,𝑜)𝑖

where 𝑄 is a set of triples and (𝑠, 𝑝, 𝑜) is a triple ∈ 𝑄.

Note: This metric is not robust to outliers. It is usually presented along the more reliable MRR ampligraph.
evaluation.mrr_score().

Consider the following example. Each of the two positive triples identified by * are ranked against four corrup-
tions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple ranks first. The
resulting MR is:

s p o score rank
Jack born_in Ireland 0.789 1
Jack born_in Italy 0.753 2 *
Jack born_in Germany 0.695 3
Jack born_in China 0.456 4
Jack born_in Thomas 0.234 5

s p o score rank
Jack friend_with Thomas 0.901 1 *
Jack friend_with China 0.345 2
Jack friend_with Italy 0.293 3
Jack friend_with Ireland 0.201 4
Jack friend_with Germany 0.156 5

MR=1.5

Parameters ranks (ndarray or list, shape [n] or [n,2]) – Input ranks of n test
statements.

Returns mr_score – The MR score

Return type float

90 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Examples

>>> from ampligraph.evaluation import mr_score
>>> ranks= [5, 3, 4, 10, 1]
>>> mr_score(ranks)
4.6

hits_at_n_score

ampligraph.evaluation.hits_at_n_score(ranks, n)
Hits@N

The function computes how many elements of a vector of rankings ranks make it to the top n positions.

It can be used in conjunction with the learning to rank evaluation protocol of ampligraph.evaluation.
evaluate_performance().

It is formally defined as follows:

𝐻𝑖𝑡𝑠@𝑁 =

|𝑄|∑︁
𝑖=1

1 if 𝑟𝑎𝑛𝑘(𝑠,𝑝,𝑜)𝑖 ≤ 𝑁

where 𝑄 is a set of triples and (𝑠, 𝑝, 𝑜) is a triple ∈ 𝑄.

Consider the following example. Each of the two positive triples identified by * are ranked against four cor-
ruptions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple ranks first.
Hits@1 and Hits@3 are:

s p o score rank
Jack born_in Ireland 0.789 1
Jack born_in Italy 0.753 2 *
Jack born_in Germany 0.695 3
Jack born_in China 0.456 4
Jack born_in Thomas 0.234 5

s p o score rank
Jack friend_with Thomas 0.901 1 *
Jack friend_with China 0.345 2
Jack friend_with Italy 0.293 3
Jack friend_with Ireland 0.201 4
Jack friend_with Germany 0.156 5

Hits@3=1.0
Hits@1=0.5

Parameters

• ranks (ndarray or list, shape [n] or [n,2]) – Input ranks of n test
statements.

• n (int) – The maximum rank considered to accept a positive.

Returns hits_n_score – The Hits@n score

Return type float

3.3. API 91

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from ampligraph.evaluation.metrics import hits_at_n_score
>>> rankings = np.array([1, 12, 6, 2])
>>> hits_at_n_score(rankings, n=3)
0.5

Negatives Generation

Negatives generation routines. These are corruption strategies based on the Local Closed-World Assumption (LCWA).

generate_corruptions_for_eval(X, . . . [,
. . .])

Generate corruptions for evaluation.

generate_corruptions_for_fit(X[, . . .]) Generate corruptions for training.

generate_corruptions_for_eval

ampligraph.evaluation.generate_corruptions_for_eval(X, entities_for_corruption, cor-
rupt_side='s, o')

Generate corruptions for evaluation.
Create corruptions (subject and object) for a given triple x, in compliance with the local closed
world assumption (LCWA), as described in [NMTG16].

Parameters

• X (Tensor, shape [1, 3]) – Currently, a single positive triples that will be used
to create corruptions.

• entities_for_corruption (Tensor) – All the entity IDs which are to be used
for generation of corruptions.

• corrupt_side (string) – Specifies which side of the triple to corrupt:

– ’s’: corrupt only subject.

– ’o’: corrupt only object

– ’s+o’: corrupt both subject and object

– ’s,o’: corrupt both subject and object but ranks are computed separately.

Returns out – An array of corruptions for the triples for x.

Return type Tensor, shape [n, 3]

92 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

generate_corruptions_for_fit

ampligraph.evaluation.generate_corruptions_for_fit(X, entities_list=None, eta=1, cor-
rupt_side='s, o', entities_size=0,
rnd=None)

Generate corruptions for training.

Creates corrupted triples for each statement in an array of statements, as described by [TWR+16].

Note: Collisions are not checked, as this will be computationally expensive [TWR+16]. That means that some
corruptions may result in being positive statements (i.e. unfiltered settings).

Note: When processing large knowledge graphs, it may be useful to generate corruptions only using entities
from a single batch. This also brings the benefit of creating more meaningful negatives, as entities used to
corrupt are sourced locally. The function can be configured to generate corruptions only using the entities
from the current batch. You can enable such behaviour be setting entities_size=0. In such case, if
entities_list=None all entities from the current batch will be used to generate corruptions.

Parameters

• X (Tensor, shape [n, 3]) – An array of positive triples that will be used to
create corruptions.

• entities_list (list) – List of entities to be used for generating corruptions.
(default:None).

If entities_list=None and entities_size is the number of all entities, all
entities will be used to generate corruptions (default behaviour).

If entities_list=None and entities_size=0, the batch entities will be used
to generate corruptions.

• eta (int) – The number of corruptions per triple that must be generated.

• corrupt_side (string) – Specifies which side of the triple to corrupt:

– ’s’: corrupt only subject.

– ’o’: corrupt only object

– ’s+o’: corrupt both subject and object

– ’s,o’: corrupt both subject and object

• entities_size (int) – Size of entities to be used while generating corruptions.
It assumes entity id’s start from 0 and are continuous. (default: 0). When processing
large knowledge graphs, it may be useful to generate corruptions only using entities
from a single batch. This also brings the benefit of creating more meaningful negatives,
as entities used to corrupt are sourced locally. The function can be configured to gen-
erate corruptions only using the entities from the current batch. You can enable such
behaviour be setting entities_size=0. In such case, if entities_list=None
all entities from the current batch will be used to generate corruptions.

• rnd (numpy.random.RandomState) – A random number generator.

Returns out – An array of corruptions for a list of positive triples X. For each row in X the corre-
sponding corruption indexes can be found at [index+i*n for i in range(eta)]

Return type Tensor, shape [n * eta, 3]

3.3. API 93

AmpliGraph, Release 1.3.2

Evaluation & Model Selection

Functions to evaluate the predictive power of knowledge graph embedding models, and routines for model selection.

evaluate_performance(X, model[, . . .]) Evaluate the performance of an embedding model.
select_best_model_ranking(model_class,
. . .)

Model selection routine for embedding models via ei-
ther grid search or random search.

evaluate_performance

ampligraph.evaluation.evaluate_performance(X, model, filter_triples=None, verbose=False,
filter_unseen=True, entities_subset=None,
corrupt_side='s, o', ranking_strategy='worst',
use_default_protocol=False)

Evaluate the performance of an embedding model.

The evaluation protocol follows the procedure defined in [BUGD+13] and can be summarised as:
1. Artificially generate negative triples by corrupting first the subject and then the object.
2. Remove the positive triples from the set returned by (1) – positive triples are usually the concatenation of

training, validation and test sets.
3. Rank each test triple against all remaining triples returned by (2).

With the ranks of both object and subject corruptions, one may compute metrics such as the MRR by
calculating them separately and then averaging them out. Note that the metrics implemented in Ampli-
Graph’s evaluate.metrics module will already work that way when provided with the input returned
by evaluate_performance.

The artificially generated negatives are compliant with the local closed world assumption (LCWA), as described
in [NMTG16]. In practice, that means only one side of the triple is corrupted at a time (i.e. either the subject or
the object).

Note: The evaluation protocol assigns the worst rank to a positive test triple in case of a tie with negatives. This
is the agreed upon behaviour in literature.

Hint: When entities_subset=None, the method will use all distinct entities in the knowledge graph X
to generate negatives to rank against. This might slow down the eval. Some of the corruptions may not even
make sense for the task that one may be interested in.

For eg, consider the case <Actor, acted_in, ?>, where we are mainly interested in such movies that an actor has
acted in. A sensible way to evaluate this would be to rank against all the movie entities and compute the desired
metrics. In such cases, where focus us on particular task, it is recommended to pass the desired entities to use
to generate corruptions to entities_subset. Besides, trying to rank a positive against an extremely large
number of negatives may be overkilling.

As a reference, the popular FB15k-237 dataset has ~15k distinct entities. The evaluation protocol ranks each
positives against 15k corruptions per side.

Parameters

• X (ndarray, shape [n, 3]) – An array of test triples.

• model (EmbeddingModel) – A knowledge graph embedding model

94 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• filter_triples (ndarray of shape [n, 3] or None) – The triples
used to filter negatives.

Note: When filtered mode is enabled (i.e. filtered_triples is not None), to speed up the
procedure, we use a database based filtering. This strategy is as described below:

– Store the filter_triples in the DB

– For each test triple, we generate corruptions for evaluation and score them.

– The corruptions may contain some False Negatives. We find such statements by
quering the database.

– From the computed scores we retrieve the scores of the False Negatives.

– We compute the rank of the test triple by comparing against ALL the corruptions.

– We then compute the number of False negatives that are ranked higher than the test
triple; and then subtract this value from the above computed rank to yield the final
filtered rank.

Execution Time: This method takes ~4 minutes on FB15K using ComplEx (Intel Xeon
Gold 6142, 64 GB Ubuntu 16.04 box, Tesla V100 16GB)

• verbose (bool) – Verbose mode

• filter_unseen (bool) – This can be set to False to skip filtering of unseen entities
if train_test_split_unseen() was used to split the original dataset.

• entities_subset (array-like) – List of entities to use for corruptions. If
None, will generate corruptions using all distinct entities. Default is None.

• corrupt_side (string) – Specifies which side of the triple to corrupt:

– ’s’: corrupt only subject.

– ’o’: corrupt only object.

– ’s+o’: corrupt both subject and object.

– ’s,o’: corrupt subject and object sides independently and return 2 ranks. This corre-
sponds to the evaluation protocol used in literature, where head and tail corruptions
are evaluated separately.

Note: When corrupt_side='s,o' the function will return 2*n ranks as a [n,
2] array. The first column of the array represents the subject corruptions. The second
column of the array represents the object corruptions. Otherwise, the function returns n
ranks as [n] array.

• ranking_strategy (string) – Specifies the type of score comparison strategy to
use while ranking:

– ’worst’: assigns the worst rank when scores are equal

– ’best’: assigns the best rank when scores are equal

– ’middle’: assigns the middle rank when scores are equal

Our recommendation is to use worst. Think of a model which assigns constant score
to any triples. If you use the best strategy then the ranks will always be 1 (which is
incorrect because the model has not learnt anything). If you choose this model and try

3.3. API 95

AmpliGraph, Release 1.3.2

to do knowledge discovery, you will not be able to deduce anything as all triples will get
the same scores. So to be on safer side while choosing the model, we would recommend
either worst or middle strategy.

• use_default_protocol (bool) – Flag to indicate whether to use the standard
protocol used in literature defined in [BUGD+13] (default: False). If set to True,
corrupt_side will be set to ‘s,o’. This corresponds to the evaluation protocol
used in literature, where head and tail corruptions are evaluated separately, i.e. in cor-
rupt_side=’s,o’ mode

Returns ranks – An array of ranks of test triples. When corrupt_side='s,o' the function
returns [n,2]. The first column represents the rank against subject corruptions and the second
column represents the rank against object corruptions. In other cases, it returns [n] i.e. rank
against the specified corruptions.

Return type ndarray, shape [n] or [n,2] depending on the value of corrupt_side.

Examples

>>> import numpy as np
>>> from ampligraph.datasets import load_wn18
>>> from ampligraph.latent_features import ComplEx
>>> from ampligraph.evaluation import evaluate_performance, mrr_score, hits_at_n_
→˓score
>>>
>>> X = load_wn18()
>>> model = ComplEx(batches_count=10, seed=0, epochs=10, k=150, eta=1,
>>> loss='nll', optimizer='adam')
>>> model.fit(np.concatenate((X['train'], X['valid'])))
>>>
>>> filter_triples = np.concatenate((X['train'], X['valid'], X['test']))
>>> ranks = evaluate_performance(X['test'][:5], model=model,
>>> filter_triples=filter_triples,
>>> corrupt_side='s+o',
>>> use_default_protocol=False)
>>> ranks
array([1, 582, 543, 6, 31])
>>> mrr_score(ranks)
0.24049691297347323
>>> hits_at_n_score(ranks, n=10)
0.4

96 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

select_best_model_ranking

ampligraph.evaluation.select_best_model_ranking(model_class, X_train,
X_valid, X_test, param_grid,
max_combinations=None,
param_grid_random_seed=0,
use_filter=True,
early_stopping=False,
early_stopping_params=None,
use_test_for_selection=False, en-
tities_subset=None, corrupt_side='s,
o', use_default_protocol=False,
retrain_best_model=False, ver-
bose=False)

Model selection routine for embedding models via either grid search or random search.

For grid search, pass a fixed param_grid and leave max_combinations as None so that all combinations
will be explored.

For random search, delimit max_combinations to your computational budget and optionally set some pa-
rameters to be callables instead of a list (see the documentation for param_grid).

Note: Random search is more efficient than grid search as the number of parameters grows [BB12]. It is also a
strong baseline against more advanced methods such as Bayesian optimization [LJ18].

The function also retrains the best performing model on the concatenation of training and validation sets.

Note we generate negatives at runtime according to the strategy described in [BUGD+13].

Note: By default, model selection is done with raw MRR for better runtime performance
(use_filter=False).

Parameters

• model_class (class) – The class of the EmbeddingModel to evaluate (TransE,
DistMult, ComplEx, etc).

• X_train (ndarray, shape [n, 3]) – An array of training triples.

• X_valid (ndarray, shape [n, 3]) – An array of validation triples.

• X_test (ndarray, shape [n, 3]) – An array of test triples.

• param_grid (dict) – A grid of hyperparameters to use in model selection. The
routine will train a model for each combination of these hyperparameters.

Parameters can be either callables or lists. If callable, it must take no parameters and
return a constant value. If any parameter is a callable, max_combinations must be
set to some value.

For example, the learning rate could either be "lr": [0.1, 0.01] or "lr":
lambda: np.random.uniform(0.01, 0.1).

• max_combinations (int) – Maximum number of combinations to explore. By
default (None) all combinations will be explored, which makes it incompatible with
random parameters for random search.

3.3. API 97

AmpliGraph, Release 1.3.2

• param_grid_random_seed (int) – Random seed for the parameters that are
callables and random.

• use_filter (bool) – If True, will use the entire input dataset X to compute filtered
MRR (default: True).

• early_stopping (bool) – Flag to enable early stopping (default:False).

If set to True, the training loop adopts the following early stopping heuristic:

– The model will be trained regardless of early stopping for burn_in epochs.

– Every check_interval epochs the method will compute the metric specified
in criteria.

If such metric decreases for stop_interval checks, we stop training early.

Note the metric is computed on x_valid. This is usually a validation set that you held
out.

Also, because criteria is a ranking metric, it requires generating negatives. Entities
used to generate corruptions can be specified, as long as the side(s) of a triple to corrupt.
The method supports filtered metrics, by passing an array of positives to x_filter.
This will be used to filter the negatives generated on the fly (i.e. the corruptions).

Note: Keep in mind the early stopping criteria may introduce a certain overhead
(caused by the metric computation). The goal is to strike a good trade-off between
such overhead and saving training epochs.

A common approach is to use MRR unfiltered:

early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'}

Note the size of validation set also contributes to such overhead. In most cases a smaller
validation set would be enough.

• early_stopping_params (dict) – Dictionary of parameters for early stopping.

The following keys are supported:

– x_valid: ndarray, shape [n, 3] : Validation set to be used for early stopping. Uses
X[‘valid’] by default.

– criteria: criteria for early stopping hits10, hits3, hits1 or mrr. (default)

– x_filter: ndarray, shape [n, 3] : Filter to be used(no filter by default)

– burn_in: Number of epochs to pass before kicking in early stopping(default: 100)

– check_interval: Early stopping interval after burn-in(default:10)

– stop_interval: Stop if criteria is performing worse over n consecutive checks (de-
fault: 3)

• use_test_for_selection (bool) – Use test set for model selection. If False,
uses validation set (default: False).

• entities_subset (array-like) – List of entities to use for corruptions. If
None, will generate corruptions using all distinct entities (default: None).

• corrupt_side (string) – Specifies which side to corrupt the entities: s is to
corrupt only subject. o is to corrupt only object. s+o is to corrupt both subject and

98 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

object. s,o is to corrupt both subject and object but ranks are computed separately
(default).

• use_default_protocol (bool) – Flag to indicate whether to evaluate head and
tail corruptions separately(default:False). If this is set to true, it will ignore cor-
rupt_side argument and corrupt both head and tail separately and rank triples i.e. cor-
rupt_side=’s,o’ mode.

• retrain_best_model (bool) – Flag to indicate whether best model should be
re-trained at the end with the validation set used in the search. Default: False.

• verbose (bool) – Verbose mode for the model selection procedure (which is inde-
pendent of the verbose mode in the model fit).

Verbose mode includes display of the progress bar, logging info for each iteration, eval-
uation information, and exception details.

If you need verbosity inside the model training itself, change the verbose parameter
within the param_grid.

Returns

• best_model (EmbeddingModel) – The best trained embedding model obtained in model
selection.

• best_params (dict) – The hyperparameters of the best embedding model best_model.

• best_mrr_train (float) – The MRR (unfiltered) of the best model computed over the
validation set in the model selection loop.

• ranks_test (ndarray, shape [n] or [n,2] depending on the value of corrupt_side.) –
An array of ranks of test triples. When corrupt_side='s,o' the function returns
[n,2]. The first column represents the rank against subject corruptions and the second
column represents the rank against object corruptions. In other cases, it returns [n] i.e.
rank against the specified corruptions.

• mrr_test (float) – The MRR (filtered) of the best model, retrained on the concatenation
of training and validation sets, computed over the test set.

• experimental_history (list of dict) – A list containing all the intermediate experimental
results: the model parameters and the corresponding validation metrics.

Examples

>>> from ampligraph.datasets import load_wn18
>>> from ampligraph.latent_features import ComplEx
>>> from ampligraph.evaluation import select_best_model_ranking
>>> import numpy as np
>>>
>>> X = load_wn18()
>>>
>>> model_class = ComplEx
>>> param_grid = {
>>> "batches_count": [50],
>>> "seed": 0,
>>> "epochs": [100],
>>> "k": [100, 200],
>>> "eta": [5, 10, 15],
>>> "loss": ["pairwise", "nll"],

(continues on next page)

3.3. API 99

AmpliGraph, Release 1.3.2

(continued from previous page)

>>> "loss_params": {
>>> "margin": [2]
>>> },
>>> "embedding_model_params": {
>>> },
>>> "regularizer": ["LP", None],
>>> "regularizer_params": {
>>> "p": [1, 3],
>>> "lambda": [1e-4, 1e-5]
>>> },
>>> "optimizer": ["adagrad", "adam"],
>>> "optimizer_params": {
>>> "lr": lambda: np.random.uniform(0.0001, 0.01)
>>> },
>>> "verbose": False
>>> }
>>> select_best_model_ranking(model_class, X['train'], X['valid'], X['test'],
>>> param_grid,
>>> max_combinations=100,
>>> use_filter=True,
>>> verbose=True,
>>> early_stopping=True)

Helper Functions

Utilities and support functions for evaluation procedures.

train_test_split_no_unseen(X[, test_size,
. . .])

Split into train and test sets.

create_mappings(X) Create string-IDs mappings for entities and relations.
to_idx(X, ent_to_idx, rel_to_idx) Convert statements (triples) into integer IDs.

train_test_split_no_unseen

ampligraph.evaluation.train_test_split_no_unseen(X, test_size=100, seed=0, al-
low_duplication=False, fil-
tered_test_predicates=None)

Split into train and test sets.
This function carves out a test set that contains only entities and relations which also occur in the
training set.

Parameters

• X (ndarray, size[n, 3]) – The dataset to split.

• test_size (int, float) – If int, the number of triples in the test set. If float, the
percentage of total triples.

• seed (int) – A random seed used to split the dataset.

• allow_duplication (boolean) – Flag to indicate if the test set can contain du-
plicated triples.

• filtered_test_predicates (None, list) – If None, all predicate types will
be considered for the test set. If list, only the predicate types in the list will be considered

100 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

for the test set.

Returns

• X_train (ndarray, size[n, 3]) – The training set.

• X_test (ndarray, size[n, 3]) – The test set.

Examples

>>> import numpy as np
>>> from ampligraph.evaluation import train_test_split_no_unseen
>>> # load your dataset to X
>>> X = np.array([['a', 'y', 'b'],
>>> ['f', 'y', 'e'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],
>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>> # if you want to split into train/test datasets
>>> X_train, X_test = train_test_split_no_unseen(X, test_size=2)
>>> X_train
array([['a', 'y', 'b'],

['f', 'y', 'e'],
['b', 'y', 'a'],
['c', 'y', 'a'],
['c', 'y', 'd'],
['b', 'y', 'c'],
['f', 'y', 'e']], dtype='<U1')

>>> X_test
array([['a', 'y', 'c'],

['a', 'y', 'd']], dtype='<U1')
>>> # if you want to split into train/valid/test datasets, call it 2 times
>>> X_train_valid, X_test = train_test_split_no_unseen(X, test_size=2)
>>> X_train, X_valid = train_test_split_no_unseen(X_train_valid, test_size=2)
>>> X_train
array([['a', 'y', 'b'],

['b', 'y', 'a'],
['c', 'y', 'd'],
['b', 'y', 'c'],
['f', 'y', 'e']], dtype='<U1')

>>> X_valid
array([['f', 'y', 'e'],

['c', 'y', 'a']], dtype='<U1')
>>> X_test
array([['a', 'y', 'c'],

['a', 'y', 'd']], dtype='<U1')

3.3. API 101

AmpliGraph, Release 1.3.2

create_mappings

ampligraph.evaluation.create_mappings(X)
Create string-IDs mappings for entities and relations.

Entities and relations are assigned incremental, unique integer IDs. Mappings are preserved in two distinct
dictionaries, and counters are separated for entities and relations mappings.

Parameters X (ndarray, shape [n, 3]) – The triples to extract mappings.

Returns

• rel_to_idx (dict) – The relation-to-internal-id associations.

• ent_to_idx (dict) – The entity-to-internal-id associations.

to_idx

ampligraph.evaluation.to_idx(X, ent_to_idx, rel_to_idx)
Convert statements (triples) into integer IDs.

Parameters

• X (ndarray) – The statements to be converted.

• ent_to_idx (dict) – The mappings between entity strings and internal IDs.

• rel_to_idx (dict) – The mappings between relation strings and internal IDs.

Returns X – The ndarray of converted statements.

Return type ndarray, shape [n, 3]

3.3.4 Discovery

This module includes a number of functions to perform knowledge discovery in graph embeddings.

Functions provided include discover_factswhich will generate candidate statements using one of several defined
strategies and return triples that perform well when evaluated against corruptions, find_clusters which will
perform link-based cluster analysis on a knowledge graph, find_duplicates which will find duplicate entities
in a graph based on their embeddings, and query_topn which when given two elements of a triple will return the
top_n results of all possible completions ordered by predicted score.

discover_facts(X, model[, top_n, strategy, . . .]) Discover new facts from an existing knowledge graph.
find_clusters(X, model[, . . .]) Perform link-based cluster analysis on a knowledge

graph.
find_duplicates(X, model[, mode, metric, . . .]) Find duplicate entities, relations or triples in a graph

based on their embeddings.
query_topn(model[, top_n, head, relation, . . .]) Queries the model with two elements of a triple and re-

turns the top_n results of all possible completions or-
dered by score predicted by the model.

102 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

discover_facts

ampligraph.discovery.discover_facts(X, model, top_n=10, strategy='random_uniform',
max_candidates=100, target_rel=None, seed=0)

Discover new facts from an existing knowledge graph.

You should use this function when you already have a model trained on a knowledge graph and you want to
discover potentially true statements in that knowledge graph.

The general procedure of this function is to generate a set of candidate statements 𝐶 according to some sampling
strategy strategy, then rank them against a set of corruptions using the ampligraph.evaluation.
evaluate_performance() function. Candidates that appear in the top_n ranked statements of this pro-
cedure are returned as likely true statements.

The majority of the strategies are implemented with the same underlying principle of searching for candidate
statements:

• from among the less frequent entities (‘entity_frequency’),
• less connected entities (‘graph_degree’, cluster_coefficient’),
• less frequent local graph structures (‘cluster_triangles’, ‘cluster_squares’), on the assumption that

densely connected entities are less likely to have missing true statements.
• The remaining strategies (‘random_uniform’, ‘exhaustive’) generate candidate statements by a random

sampling of entity and relations and exhaustively, respectively.

Warning: Due to the significant amount of computation required to evaluate all triples using the ‘exhaus-
tive’ strategy, we do not recommend its use at this time.

The function will automatically filter entities that haven’t been seen by the model, and operates on the assump-
tion that the model provided has been fit on the data X (determined heuristically), although X may be a subset of
the original data, in which case a warning is shown.

The target_rel argument indicates what relation to generate candidate statements for. If this is set to None
then all target relations will be considered for sampling.

Parameters

• X (ndarray, shape [n, 3]) – The input knowledge graph used to train model,
or a subset of it.

• model (EmbeddingModel) – The trained model that will be used to score candidate
facts.

• top_n (int) – The cutoff position in ranking to consider a candidate triple as true
positive.

• strategy (string) – The candidates generation strategy:

– ’random_uniform’ : generates N candidates (N <= max_candidates) based on a
uniform sampling of entities.

– ’entity_frequency’ : generates candidates by weighted sampling of entities using
entity frequency.

– ’graph_degree’ : generates candidates by weighted sampling of entities with graph
degree.

– ’cluster_coefficient’ : generates candidates by weighted sampling entities with
clustering coefficient.

– ’cluster_triangles’ : generates candidates by weighted sampling entities with clus-
ter triangles.

3.3. API 103

AmpliGraph, Release 1.3.2

– ’cluster_squares’ : generates candidates by weighted sampling entities with cluster
squares.

• max_candidates (int or float) – The maximum numbers of candidates gen-
erated by ‘strategy’. Can be an absolute number or a percentage [0,1] of the size of the
`X` parameter.

• target_rel (str or list(str)) – Target relations to focus on. The function
will discover facts only for that specific relation types. If None, the function attempts
to discover new facts for all relation types in the graph.

• seed (int) – Seed to use for reproducible results.

Returns X_pred – A list of new facts predicted to be true.

Return type ndarray, shape [n, 3]

Examples

>>> import requests
>>> from ampligraph.datasets import load_from_csv
>>> from ampligraph.latent_features import ComplEx
>>> from ampligraph.discovery import discover_facts
>>>
>>> # Game of Thrones relations dataset
>>> url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/GoT.csv'
>>> open('GoT.csv', 'wb').write(requests.get(url).content)
>>> X = load_from_csv('.', 'GoT.csv', sep=',')
>>>
>>> model = ComplEx(batches_count=10, seed=0, epochs=200, k=150, eta=5,
>>> optimizer='adam', optimizer_params={'lr':1e-3},
>>> loss='multiclass_nll', regularizer='LP',
>>> regularizer_params={'p':3, 'lambda':1e-5},
>>> verbose=True)
>>> model.fit(X)
>>>
>>> discover_facts(X, model, top_n=3, max_candidates=20000, strategy='entity_
→˓frequency',
>>> target_rel='ALLIED_WITH', seed=42)
array([['House Reed of Greywater Watch', 'ALLIED_WITH', 'Sybelle Glover'],

['Hugo Wull', 'ALLIED_WITH', 'House Norrey'],
['House Grell', 'ALLIED_WITH', 'Delonne Allyrion'],
['Lorent Lorch', 'ALLIED_WITH', 'House Ruttiger']], dtype=object)

find_clusters

ampligraph.discovery.find_clusters(X, model, clustering_algorithm=DBSCAN(),
mode='entity')

Perform link-based cluster analysis on a knowledge graph.

The clustering happens on the embedding space of the entities and relations. For example, if we cluster some
entities of a model that uses k=100 (i.e. embedding space of size 100), we will apply the chosen clustering
algorithm on the 100-dimensional space of the provided input samples.

Clustering can be used to evaluate the quality of the knowledge embeddings, by comparing to natural clusters.
For example, in the example below we cluster the embeddings of international football matches and end up
finding geographical clusters very similar to the continents. This comparison can be subjective by inspecting a
2D projection of the embedding space or objective using a clustering metric.

104 Chapter 3. How to Cite

https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

AmpliGraph, Release 1.3.2

The choice of the clustering algorithm and its corresponding tuning will greatly impact the results. Please see
scikit-learn documentation for a list of algorithms, their parameters, and pros and cons.

Clustering is exclusive (i.e. a triple is assigned to one and only one cluster).
Parameters

• X (ndarray, shape [n, 3] or [n]) – The input to be clustered. X can either
be the triples of a knowledge graph, its entities, or its relations. The argument mode
defines whether X is supposed an array of triples or an array of either entities or relations.

• model (EmbeddingModel) – The fitted model that will be used to generate
the embeddings. This model must have been fully trained already, be it directly
with fit() or from a helper function such as ampligraph.evaluation.
select_best_model_ranking().

• clustering_algorithm (object) – The initialized object of the clustering al-
gorithm. It should be ready to apply the fit_predict method. Please see: scikit-learn
documentation to understand the clustering API provided by scikit-learn. The default
clustering model is sklearn’s DBSCAN with its default parameters.

• mode (string) – Clustering mode. Choose from:

– ’entity’ (default): the algorithm will cluster the embeddings of the provided
entities.

– ’relation’: the algorithm will cluster the embeddings of the provided relations.

– ’triple’ : the algorithm will cluster the concatenation of the embeddings of the
subject, predicate and object for each triple.

Returns labels – Index of the cluster each triple belongs to.

Return type ndarray, shape [n]

Examples

>>> # Note seaborn, matplotlib, adjustText are not AmpliGraph dependencies.
>>> # and must therefore be installed manually as:
>>> #
>>> # $ pip install seaborn matplotlib adjustText
>>>
>>> import requests
>>> import pandas as pd
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> from sklearn.cluster import KMeans
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>>
>>> # adjustText lib: https://github.com/Phlya/adjustText
>>> from adjustText import adjust_text
>>>
>>> from ampligraph.datasets import load_from_csv
>>> from ampligraph.latent_features import ComplEx
>>> from ampligraph.discovery import find_clusters
>>>
>>> # International football matches triples

(continues on next page)

3.3. API 105

https://scikit-learn.org/stable/modules/clustering.html#clustering
https://scikit-learn.org/stable/modules/clustering.html#clustering
https://scikit-learn.org/stable/modules/clustering.html#clustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

AmpliGraph, Release 1.3.2

(continued from previous page)

>>> # See tutorial here to understand how the triples are created from a tabular
→˓dataset:
>>> # https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/
→˓ClusteringAndClassificationWithEmbeddings.ipynb
>>> url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/football.csv'
>>> open('football.csv', 'wb').write(requests.get(url).content)
>>> X = load_from_csv('.', 'football.csv', sep=',')[:, 1:]
>>>
>>> model = ComplEx(batches_count=50,
>>> epochs=300,
>>> k=100,
>>> eta=20,
>>> optimizer='adam',
>>> optimizer_params={'lr':1e-4},
>>> loss='multiclass_nll',
>>> regularizer='LP',
>>> regularizer_params={'p':3, 'lambda':1e-5},
>>> seed=0,
>>> verbose=True)
>>> model.fit(X)
>>>
>>> df = pd.DataFrame(X, columns=["s", "p", "o"])
>>>
>>> teams = np.unique(np.concatenate((df.s[df.s.str.startswith("Team")],
>>> df.o[df.o.str.startswith("Team")])))
>>> team_embeddings = model.get_embeddings(teams, embedding_type='entity')
>>>
>>> embeddings_2d = PCA(n_components=2).fit_transform(np.array([i for i in team_
→˓embeddings]))
>>>
>>> # Find clusters of embeddings using KMeans
>>> kmeans = KMeans(n_clusters=6, n_init=100, max_iter=500)
>>> clusters = find_clusters(teams, model, kmeans, mode='entity')
>>>
>>> # Plot results
>>> df = pd.DataFrame({"teams": teams, "clusters": "cluster" + pd.
→˓Series(clusters).astype(str),
>>> "embedding1": embeddings_2d[:, 0], "embedding2":
→˓embeddings_2d[:, 1]})
>>>
>>> plt.figure(figsize=(10, 10))
>>> plt.title("Cluster embeddings")
>>>
>>> ax = sns.scatterplot(data=df, x="embedding1", y="embedding2", hue="clusters")
>>>
>>> texts = []
>>> for i, point in df.iterrows():
>>> if np.random.uniform() < 0.1:
>>> texts.append(plt.text(point['embedding1']+.02, point['embedding2'],
→˓str(point['teams'])))
>>> adjust_text(texts)

106 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

find_duplicates

ampligraph.discovery.find_duplicates(X, model, mode='entity', metric='l2', tolerance='auto',
expected_fraction_duplicates=0.1, verbose=False)

Find duplicate entities, relations or triples in a graph based on their embeddings.

For example, say you have a movie dataset that was scraped off the web with possible duplicate movies. The
movies in this case are the entities. Therefore, you would use the ‘entity’ mode to find all the movies that could
de duplicates of each other.

Duplicates are defined as points whose distance in the embedding space are smaller than some given threshold
(called the tolerance).

The tolerance can be defined a priori or be found via an optimisation procedure given an expected fraction of
duplicates. The optimisation algorithm applies a root-finding routine to find the tolerance that gets to the closest
expected fraction. The routine always converges.

3.3. API 107

AmpliGraph, Release 1.3.2

Distance is defined by the chosen metric, which by default is the Euclidean distance (L2 norm).

As the distances are calculated on the embedding space, the embeddings must be meaningful for this routine to
work properly. Therefore, it is suggested to evaluate the embeddings first using a metric such as MRR before
considering applying this method.

Parameters

• X (ndarray, shape [n, 3] or [n]) – The input to be clustered. X can ei-
ther be the triples of a knowledge graph, its entities, or its relations. The argument
mode defines whether X is supposed an array of triples or an array of either entities or
relations.

• model (EmbeddingModel) – The fitted model that will be used to generate
the embeddings. This model must have been fully trained already, be it directly
with fit() or from a helper function such as ampligraph.evaluation.
select_best_model_ranking().

• mode (string) – Choose from:

– ’entity’ (default): the algorithm will find duplicates of the provided entities based
on their embeddings.

– ’relation’: the algorithm will find duplicates of the provided relations based on
their embeddings.

– ’triple’ : the algorithm will find duplicates of the concatenation of the embeddings
of the subject, predicate and object for each provided triple.

• metric (str) – A distance metric used to compare entity distance in the embedding
space. See options here.

• tolerance (int or str) – Minimum distance (depending on the chosen
metric) to define one entity as the duplicate of another. If ‘auto’, it will be determined
automatically in a way that you get the expected_fraction_duplicates. The
‘auto’ option can be much slower than the regular one, as the finding duplicate internal
procedure will be repeated multiple times.

• expected_fraction_duplicates (float) – Expected fraction of duplicates
to be found. It is used only when tolerance is ‘auto’. Should be between 0 and 1
(default: 0.1).

• verbose (bool) – Whether to print evaluation messages during optimisation (if
tolerance is ‘auto’). Default: False.

Returns

• duplicates (set of frozensets) – Each entry in the duplicates set is a frozenset containing
all entities that were found to be duplicates according to the metric and tolerance. Each
frozenset will contain at least two entities.

• tolerance (float) – Tolerance used to find the duplicates (useful in the case of the auto-
matic tolerance option).

108 Chapter 3. How to Cite

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html

AmpliGraph, Release 1.3.2

Examples

>>> import pandas as pd
>>> import numpy as np
>>> import re
>>>
>>> # The IMDB dataset used here is part of the Movies5 dataset found on:
>>> # The Magellan Data Repository (https://sites.google.com/site/anhaidgroup/
→˓projects/data)
>>> import requests
>>> url = 'http://pages.cs.wisc.edu/~anhai/data/784_data/movies5.tar.gz'
>>> open('movies5.tar.gz', 'wb').write(requests.get(url).content)
>>> import tarfile
>>> tar = tarfile.open('movies5.tar.gz', "r:gz")
>>> tar.extractall()
>>> tar.close()
>>>
>>> # Reading tabular dataset of IMDB movies and filling the missing values
>>> imdb = pd.read_csv("movies5/csv_files/imdb.csv")
>>> imdb["directors"] = imdb["directors"].fillna("UnknownDirector")
>>> imdb["actors"] = imdb["actors"].fillna("UnknownActor")
>>> imdb["genre"] = imdb["genre"].fillna("UnknownGenre")
>>> imdb["duration"] = imdb["duration"].fillna("0")
>>>
>>> # Creating knowledge graph triples from tabular dataset
>>> imdb_triples = []
>>>
>>> for _, row in imdb.iterrows():
>>> movie_id = "ID" + str(row["id"])
>>> directors = row["directors"].split(",")
>>> actors = row["actors"].split(",")
>>> genres = row["genre"].split(",")
>>> duration = "Duration" + str(int(re.sub("\D", "", row["duration"])) // 30)
>>>
>>> directors_triples = [(movie_id, "hasDirector", d) for d in directors]
>>> actors_triples = [(movie_id, "hasActor", a) for a in actors]
>>> genres_triples = [(movie_id, "hasGenre", g) for g in genres]
>>> duration_triple = (movie_id, "hasDuration", duration)
>>>
>>> imdb_triples.extend(directors_triples)
>>> imdb_triples.extend(actors_triples)
>>> imdb_triples.extend(genres_triples)
>>> imdb_triples.append(duration_triple)
>>>
>>> # Training knowledge graph embedding with ComplEx model
>>> from ampligraph.latent_features import ComplEx
>>>
>>> model = ComplEx(batches_count=10,
>>> seed=0,
>>> epochs=200,
>>> k=150,
>>> eta=5,
>>> optimizer='adam',
>>> optimizer_params={'lr':1e-3},
>>> loss='multiclass_nll',
>>> regularizer='LP',
>>> regularizer_params={'p':3, 'lambda':1e-5},

(continues on next page)

3.3. API 109

AmpliGraph, Release 1.3.2

(continued from previous page)

>>> verbose=True)
>>>
>>> imdb_triples = np.array(imdb_triples)
>>> model.fit(imdb_triples)
>>>
>>> # Finding duplicates movies (entities)
>>> from ampligraph.discovery import find_duplicates
>>>
>>> entities = np.unique(imdb_triples[:, 0])
>>> dups, _ = find_duplicates(entities, model, mode='entity', tolerance=0.4)
>>> print(list(dups)[:3])
[frozenset({'ID4048', 'ID4049'}), frozenset({'ID5994', 'ID5993'}), frozenset({
→˓'ID6447', 'ID6448'})]
>>> print(imdb[imdb.id.isin((4048, 4049, 5994, 5993, 6447, 6448))][['movie_name',
→˓'year']])

movie_name year
4048 Ulterior Motives 1993
4049 Ulterior Motives 1993
5993 Chinese Hercules 1973
5994 Chinese Hercules 1973
6447 The Stranglers of Bombay 1959
6448 The Stranglers of Bombay 1959

query_topn

ampligraph.discovery.query_topn(model, top_n=10, head=None, relation=None, tail=None,
ents_to_consider=None, rels_to_consider=None)

Queries the model with two elements of a triple and returns the top_n results of all possible completions ordered
by score predicted by the model.

For example, given a <subject, predicate> pair in the arguments, the model will score all possible triples <sub-
ject, predicate, ?>, filling in the missing element with known entities, and return the top_n triples ordered by
score. If given a <subject, object> pair it will fill in the missing element with known relations.

Note: This function does not filter out true statements - triples returned can include those the model was trained
on.

Parameters

• model (EmbeddingModel) – The trained model that will be used to score triple
completions.

• top_n (int) – The number of completed triples to returned.

• head (string) – An entity string to query.

• relation (string) – A relation string to query.

• tail – An object string to query.

• ents_to_consider (array-like) – List of entities to use for triple completions.
If None, will generate completions using all distinct entities. (Default: None.)

• rels_to_consider (array-like) – List of relations to use for triple comple-
tions. If None, will generate completions using all distinct relations. (Default: None.)

Returns

110 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• X (ndarray, shape [n, 3]) – A list of triples ordered by score.

• S (ndarray, shape [n]) – A list of scores.

Examples

>>> import requests
>>> from ampligraph.datasets import load_from_csv
>>> from ampligraph.latent_features import ComplEx
>>> from ampligraph.discovery import discover_facts
>>> from ampligraph.discovery import query_topn
>>>
>>> # Game of Thrones relations dataset
>>> url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/GoT.csv'
>>> open('GoT.csv', 'wb').write(requests.get(url).content)
>>> X = load_from_csv('.', 'GoT.csv', sep=',')
>>>
>>> model = ComplEx(batches_count=10, seed=0, epochs=200, k=150, eta=5,
>>> optimizer='adam', optimizer_params={'lr':1e-3}, loss=
→˓'multiclass_nll',
>>> regularizer='LP', regularizer_params={'p':3, 'lambda':1e-5},
>>> verbose=True)
>>> model.fit(X)
>>>
>>> query_topn(model, top_n=5,
>>> head='Catelyn Stark', relation='ALLIED_WITH', tail=None,
>>> ents_to_consider=None, rels_to_consider=None)
>>>
(array([['Catelyn Stark', 'ALLIED_WITH', 'House Tully of Riverrun'],

['Catelyn Stark', 'ALLIED_WITH', 'House Stark of Winterfell'],
['Catelyn Stark', 'ALLIED_WITH', 'House Wayn'],
['Catelyn Stark', 'ALLIED_WITH', 'House Mollen'],
['Catelyn Stark', 'ALLIED_WITH', 'Orton Merryweather']],

dtype='<U44'), array([[10.261374],
[8.84298],
[2.78139],
[1.9809164],
[1.833096]], dtype=float32))

3.3.5 Utils

This module contains utility functions for neural knowledge graph embedding models.

Saving/Restoring Models

Models can be saved and restored from disk. This is useful to avoid re-training a model.

save_model(model[, model_name_path]) Save a trained model to disk.
restore_model([model_name_path]) Restore a saved model from disk.

3.3. API 111

AmpliGraph, Release 1.3.2

save_model

ampligraph.utils.save_model(model, model_name_path=None)
Save a trained model to disk.

Examples

>>> import numpy as np
>>> from ampligraph.latent_features import ComplEx
>>> from ampligraph.utils import save_model
>>> model = ComplEx(batches_count=2, seed=555, epochs=20, k=10)
>>> X = np.array([['a', 'y', 'b'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],
>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>> model.fit(X)
>>> y_pred_before = model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
>>> example_name = 'helloworld.pkl'
>>> save_model(model, model_name_path = example_name)
>>> print(y_pred_before)
[-0.29721245, 0.07865551]

Parameters

• model (EmbeddingModel) – A trained neural knowledge graph embedding model,
the model must be an instance of TransE, DistMult, ComplEx, or HolE.

• model_name_path (string) – The name of the model to be saved. If not specified,
a default name model with current datetime is named and saved to the working directory

restore_model

ampligraph.utils.restore_model(model_name_path=None)
Restore a saved model from disk.

See also save_model().

Examples

>>> from ampligraph.utils import restore_model
>>> import numpy as np
>>> example_name = 'helloworld.pkl'
>>> restored_model = restore_model(model_name_path = example_name)
>>> y_pred_after = restored_model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd
→˓']]))
>>> print(y_pred_after)
[-0.29721245, 0.07865551]

Parameters model_name_path (string) – The name of saved model to be restored. If not
specified, the library will try to find the default model in the working directory.

112 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

Returns model – the neural knowledge graph embedding model restored from disk.

Return type EmbeddingModel

Visualization

Functions to visualize embeddings.

create_tensorboard_visualizations(model,
loc)

Export embeddings to Tensorboard.

create_tensorboard_visualizations

ampligraph.utils.create_tensorboard_visualizations(model, loc, labels=None,
write_metadata=True, ex-
port_tsv_embeddings=True)

Export embeddings to Tensorboard.

This function exports embeddings to disk in a format used by TensorBoard and TensorBoard Embedding Pro-
jector. The function exports:

• A number of checkpoint and graph embedding files in the provided location that will allow you to visualize
embeddings using Tensorboard. This is generally for use with a local Tensorboard instance.

• a tab-separated file of embeddings embeddings_projector.tsv. This is generally used to visualize
embeddings by uploading to TensorBoard Embedding Projector.

• embeddings metadata (i.e. the embeddings labels from the original knowledge graph), saved to
metadata.tsv. Such file can be used in TensorBoard or uploaded to TensorBoard Embedding Projec-
tor.

The content of loc will look like:

tensorboard_files/
checkpoint
embeddings_projector.tsv
graph_embedding.ckpt.data-00000-of-00001
graph_embedding.ckpt.index
graph_embedding.ckpt.meta
metadata.tsv
projector_config.pbtxt

Note: A TensorBoard guide is available at this address.

Note: Uploading embeddings_projector.tsv and metadata.tsv to TensorBoard Embedding Pro-
jector will give a result similar to the picture below:

3.3. API 113

https://www.tensorflow.org/tensorboard
https://projector.tensorflow.org
https://projector.tensorflow.org
https://www.tensorflow.org/tensorboard/r1/overview
https://projector.tensorflow.org
https://www.tensorflow.org/tensorboard/r1/overview
https://projector.tensorflow.org
https://projector.tensorflow.org

AmpliGraph, Release 1.3.2

Examples

>>> import numpy as np
>>> from ampligraph.latent_features import TransE
>>> from ampligraph.utils import create_tensorboard_visualizations
>>>
>>> X = np.array([['a', 'y', 'b'],
>>> ['b', 'y', 'a'],
>>> ['a', 'y', 'c'],
>>> ['c', 'y', 'a'],
>>> ['a', 'y', 'd'],
>>> ['c', 'y', 'd'],
>>> ['b', 'y', 'c'],
>>> ['f', 'y', 'e']])
>>>
>>> model = TransE(batches_count=1, seed=555, epochs=20, k=10, loss='pairwise',
>>> loss_params={'margin':5})
>>> model.fit(X)
>>>
>>> create_tensorboard_visualizations(model, 'tensorboard_files')

Parameters

• model (EmbeddingModel) – A trained neural knowledge graph embedding model,
the model must be an instance of TransE, DistMult, ComplEx, or HolE.

• loc (string) – Directory where the files are written.

114 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• labels (pd.DataFrame) – Label(s) for each embedding point in the Tensorboard
visualization. Default behaviour is to use the embeddings labels included in the model.

• export_tsv_embeddings (bool (Default: True) – If True, will generate
a tab-separated file of embeddings at the given path. This is generally used to visualize
embeddings by uploading to TensorBoard Embedding Projector.

• write_metadata (bool (Default: True)) – If True will write a file named
‘metadata.tsv’ in the same directory as path.

Others

Function to convert a pandas DataFrame with headers into triples.

dataframe_to_triples(X, schema) Convert DataFrame into triple format.

dataframe_to_triples

ampligraph.utils.dataframe_to_triples(X, schema)
Convert DataFrame into triple format.

Parameters

• X (pandas DataFrame with headers) –

• schema (List of (subject, relation_name, object) tuples) –
where subject and object are in the headers of the data frame

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from ampligraph.utils.model_utils import dataframe_to_triples
>>>
>>> X = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/
→˓master/iris.csv')
>>>
>>> schema = [['species', 'has_sepal_length', 'sepal_length']]
>>>
>>> dataframe_to_triples(X, schema)[0]
array(['setosa', 'has_sepal_length', '5.1'], dtype='<U16')

3.4 How to Contribute

3.4.1 Git Repo and Issue Tracking

AmpliGraph repository is available on GitHub.

A list of open issues is available here.

3.4. How to Contribute 115

https://projector.tensorflow.org
https://GitHub.com/Accenture/AmpliGraph/stargazers/
https://github.com/Accenture/AmpliGraph
https://github.com/Accenture/AmpliGraph/issues

AmpliGraph, Release 1.3.2

Join the conversation on Slack

3.4.2 How to Contribute

We welcome community contributions, whether they are new models, tests, or documentation.

You can contribute to AmpliGraph in many ways:

• Raise a bug report

• File a feature request

• Help other users by commenting on the issue tracking system

• Add unit tests

• Improve the documentation

• Add a new graph embedding model (see below)

3.4.3 Adding Your Own Model

The landscape of knowledge graph embeddings evolves rapidly. We welcome new models as a contribution to Ampli-
Graph, which has been built to provide a shared codebase to guarantee a fair evalaution and comparison acros models.

You can add your own model by raising a pull request.

To get started, read the documentation on how current models have been implemented.

3.4.4 Developer Notes

Additional documentation on data adapters, AmpliGraph support for large graphs, and further technical details is
available here.

3.4.5 Clone and Install in editable mode

Clone the repository and checkout the develop branch. Install from source with pip. use the -e flag to enable
editable mode:

git clone https://github.com/Accenture/AmpliGraph.git
git checkout develop
cd AmpliGraph
pip install -e .

116 Chapter 3. How to Cite

https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg
https://github.com/Accenture/AmpliGraph/issues/new?assignees=&labels=&template=bug_report.md&title=
https://github.com/Accenture/AmpliGraph/issues/new?assignees=&labels=&template=feature_request.md&title=
https://github.com/Accenture/AmpliGraph/issues
ampligraph.latent_features.html#anatomy-of-a-model
dev_notes.html
dev_notes.html
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

AmpliGraph, Release 1.3.2

3.4.6 Unit Tests

To run all the unit tests:

$ pytest tests

See pytest documentation for additional arguments.

3.4.7 Documentation

The project documentation is based on Sphinx and can be built on your local working copy as follows:

cd docs
make clean autogen html

The above generates an HTML version of the documentation under docs/_built/html.

3.4.8 Packaging

To build an AmpliGraph custom wheel, do the following:

pip wheel --wheel-dir dist --no-deps .

3.5 Examples

These examples show how to get started with AmpliGraph APIs, and cover a range of useful tasks. Note that additional
tutorials are also available.

3.5.1 Train and evaluate an embedding model

import numpy as np
from ampligraph.datasets import load_wn18
from ampligraph.latent_features import ComplEx
from ampligraph.evaluation import evaluate_performance, mrr_score, hits_at_n_score

def main():

load Wordnet18 dataset:
X = load_wn18()

Initialize a ComplEx neural embedding model with pairwise loss function:
The model will be trained for 300 epochs.
model = ComplEx(batches_count=10, seed=0, epochs=20, k=150, eta=10,

Use adam optimizer with learning rate 1e-3
optimizer='adam', optimizer_params={'lr':1e-3},
Use pairwise loss with margin 0.5
loss='pairwise', loss_params={'margin':0.5},
Use L2 regularizer with regularizer weight 1e-5
regularizer='LP', regularizer_params={'p':2, 'lambda':1e-5},
Enable stdout messages (set to false if you don't want to

→˓display)

(continues on next page)

3.5. Examples 117

https://docs.pytest.org/en/latest/
https://docs.ampligraph.org

AmpliGraph, Release 1.3.2

(continued from previous page)

verbose=True)

For evaluation, we can use a filter which would be used to filter out
positives statements created by the corruption procedure.
Here we define the filter set by concatenating all the positives
filter = np.concatenate((X['train'], X['valid'], X['test']))

Fit the model on training and validation set
model.fit(X['train'],

early_stopping = True,
early_stopping_params = \

{
'x_valid': X['valid'], # validation set
'criteria':'hits10', # Uses hits10 criteria for

→˓early stopping
'burn_in': 100, # early stopping kicks in

→˓after 100 epochs
'check_interval':20, # validates every 20th epoch
'stop_interval':5, # stops if 5 successive

→˓validation checks are bad.
'x_filter': filter, # Use filter for filtering out

→˓positives
'corruption_entities':'all', # corrupt using all entities
'corrupt_side':'s+o' # corrupt subject and object

→˓(but not at once)
}

)

Run the evaluation procedure on the test set (with filtering).
To disable filtering: filter_triples=None
Usually, we corrupt subject and object sides separately and compute ranks
ranks = evaluate_performance(X['test'],

model=model,
filter_triples=filter,
use_default_protocol=True, # corrupt subj and obj

→˓separately while evaluating
verbose=True)

compute and print metrics:
mrr = mrr_score(ranks)
hits_10 = hits_at_n_score(ranks, n=10)
print("MRR: %f, Hits@10: %f" % (mrr, hits_10))
Output: MRR: 0.886406, Hits@10: 0.935000

if __name__ == "__main__":
main()

118 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

3.5.2 Model selection

from ampligraph.datasets import load_wn18
from ampligraph.latent_features import ComplEx
from ampligraph.evaluation import select_best_model_ranking

def main():

load Wordnet18 dataset:
X_dict = load_wn18()

model_class = ComplEx

Use the template given below for doing grid search.
param_grid = {

"batches_count": [10],
"seed": 0,
"epochs": [4000],
"k": [100, 50],
"eta": [5,10],
"loss": ["pairwise", "nll", "self_adversarial"],
We take care of mapping the params to corresponding classes
"loss_params": {

#margin corresponding to both pairwise and adverserial loss
"margin": [0.5, 20],
#alpha corresponding to adverserial loss
"alpha": [0.5]

},
"embedding_model_params": {

generate corruption using all entities during training
"negative_corruption_entities":"all"

},
"regularizer": [None, "LP"],
"regularizer_params": {

"p": [2],
"lambda": [1e-4, 1e-5]

},
"optimizer": ["adam"],
"optimizer_params":{

"lr": [0.01, 0.0001]
},
"verbose": True

}

Train the model on all possibile combinations of hyperparameters.
Models are validated on the validation set.
It returnes a model re-trained on training and validation sets.
best_model, best_params, best_mrr_train, \
ranks_test, mrr_test = select_best_model_ranking(model_class, # Class handle of

→˓the model to be used
Dataset
X_dict['train'],
X_dict['valid'],
X_dict['test'],
Parameter grid
param_grid,
Use filtered set for eval

(continues on next page)

3.5. Examples 119

AmpliGraph, Release 1.3.2

(continued from previous page)

use_filter=True,
corrupt subject and objects

→˓separately during eval
use_default_protocol=True,
Log all the model hyperparams

→˓and evaluation stats
verbose=True)

print(type(best_model).__name__, best_params, best_mrr_train, mrr_test)

if __name__ == "__main__":
main()

3.5.3 Get the embeddings

import numpy as np
from ampligraph.latent_features import ComplEx

model = ComplEx(batches_count=1, seed=555, epochs=20, k=10)
X = np.array([['a', 'y', 'b'],

['b', 'y', 'a'],
['a', 'y', 'c'],
['c', 'y', 'a'],
['a', 'y', 'd'],
['c', 'y', 'd'],
['b', 'y', 'c'],
['f', 'y', 'e']])

model.fit(X)
model.get_embeddings(['f','e'], embedding_type='entity')

3.5.4 Save and restore a model

import numpy as np
from ampligraph.latent_features import ComplEx
from ampligraph.utils import save_model, restore_model

model = ComplEx(batches_count=2, seed=555, epochs=20, k=10)

X = np.array([['a', 'y', 'b'],
['b', 'y', 'a'],
['a', 'y', 'c'],
['c', 'y', 'a'],
['a', 'y', 'd'],
['c', 'y', 'd'],
['b', 'y', 'c'],
['f', 'y', 'e']])

model.fit(X)

Use the trained model to predict
y_pred_before = model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
print(y_pred_before)
#[-0.29721245, 0.07865551]

(continues on next page)

120 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

(continued from previous page)

Save the model
example_name = "helloworld.pkl"
save_model(model, model_name_path = example_name)

Restore the model
restored_model = restore_model(model_name_path = example_name)

Use the restored model to predict
y_pred_after = restored_model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
print(y_pred_after)
[-0.29721245, 0.07865551]

3.5.5 Split dataset into train/test or train/valid/test

import numpy as np
from ampligraph.evaluation import train_test_split_no_unseen
from ampligraph.datasets import load_from_csv

'''
Assume we have a knowledge graph stored in my_folder/my_graph.csv,
and that the content of such file is:

a,y,b
f,y,e
b,y,a
a,y,c
c,y,a
a,y,d
c,y,d
b,y,c
f,y,e
'''

Load the graph in memory
X = load_from_csv('my_folder', 'my_graph.csv', sep=',')

To split the graph in train and test sets:
(In this toy example the test set will include only two triples)
X_train, X_test = train_test_split_no_unseen(X, test_size=2)

print(X_train)

'''
X_train:[['a' 'y' 'b']

['f' 'y' 'e']
['b' 'y' 'a']
['c' 'y' 'a']
['c' 'y' 'd']
['b' 'y' 'c']
['f' 'y' 'e']]

'''

print(X_test)

(continues on next page)

3.5. Examples 121

AmpliGraph, Release 1.3.2

(continued from previous page)

'''
X_test: [['a' 'y' 'c']

['a' 'y' 'd']]
'''

To split the graph in train, validation, and test the method must be called twice:
X_train_valid, X_test = train_test_split_no_unseen(X, test_size=2)
X_train, X_valid = train_test_split_no_unseen(X_train_valid, test_size=2)

print(X_train)
'''
X_train: [['a' 'y' 'b']

['b' 'y' 'a']
['c' 'y' 'd']
['b' 'y' 'c']
['f' 'y' 'e']]

'''

print(X_valid)
'''
X_valid: [['f' 'y' 'e']

['c' 'y' 'a']]
'''

print(X_test)
'''
X_test: [['a' 'y' 'c']

['a' 'y' 'd']]
'''

3.5.6 Clustering and projectings embeddings into 2D space

Embedding training

import numpy as np
import pandas as pd
import requests

from ampligraph.datasets import load_from_csv
from ampligraph.latent_features import ComplEx
from ampligraph.evaluation import evaluate_performance
from ampligraph.evaluation import mr_score, mrr_score, hits_at_n_score
from ampligraph.evaluation import train_test_split_no_unseen

International football matches triples
url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/football.csv'
open('football.csv', 'wb').write(requests.get(url).content)
X = load_from_csv('.', 'football.csv', sep=',')[:, 1:]

Train test split
X_train, X_test = train_test_split_no_unseen(X, test_size=10000)

ComplEx model

(continues on next page)

122 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

(continued from previous page)

model = ComplEx(batches_count=50,
epochs=300,
k=100,
eta=20,
optimizer='adam',
optimizer_params={'lr':1e-4},
loss='multiclass_nll',
regularizer='LP',
regularizer_params={'p':3, 'lambda':1e-5},
seed=0,
verbose=True)

model.fit(X_train)

Embedding evaluation

filter_triples = np.concatenate((X_train, X_test))
ranks = evaluate_performance(X_test,

model=model,
filter_triples=filter_triples,
use_default_protocol=True,
verbose=True)

mr = mr_score(ranks)
mrr = mrr_score(ranks)

print("MRR: %.2f" % (mrr))
print("MR: %.2f" % (mr))

hits_10 = hits_at_n_score(ranks, n=10)
print("Hits@10: %.2f" % (hits_10))
hits_3 = hits_at_n_score(ranks, n=3)
print("Hits@3: %.2f" % (hits_3))
hits_1 = hits_at_n_score(ranks, n=1)
print("Hits@1: %.2f" % (hits_1))
'''
MRR: 0.25
MR: 4927.33
Hits@10: 0.35
Hits@3: 0.28
Hits@1: 0.19
'''

Clustering and 2D projections

Please install lib adjustText first with pip install adjustText. For incf.countryutils, do the following steps:

git clone https://github.com/wyldebeast-wunderliebe/incf.countryutils.git
cd incf.countryutils
pip install .

incf.countryutils is used to map countries to the corresponding continents.

3.5. Examples 123

AmpliGraph, Release 1.3.2

import re
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
from adjustText import adjust_text
from incf.countryutils import transformations
from ampligraph.discovery import find_clusters

Get the teams entities and their corresponding embeddings
triples_df = pd.DataFrame(X, columns=['s', 'p', 'o'])
teams = triples_df.s[triples_df.s.str.startswith('Team')].unique()
team_embeddings = dict(zip(teams, model.get_embeddings(teams)))
team_embeddings_array = np.array([i for i in team_embeddings.values()])

Project embeddings into 2D space via PCA
embeddings_2d = PCA(n_components=2).fit_transform(team_embeddings_array)

Cluster embeddings (on the original space)
clustering_algorithm = KMeans(n_clusters=6, n_init=100, max_iter=500, random_state=0)
clusters = find_clusters(teams, model, clustering_algorithm, mode='entity')

This function maps country to continent
def cn_to_ctn(country):

try:
original_name = ' '.join(re.findall('[A-Z][^A-Z]*', country[4:]))
return transformations.cn_to_ctn(original_name)

except KeyError:
return "unk"

plot_df = pd.DataFrame({"teams": teams,
"embedding1": embeddings_2d[:, 0],
"embedding2": embeddings_2d[:, 1],
"continent": pd.Series(teams).apply(cn_to_ctn),
"cluster": "cluster" + pd.Series(clusters).astype(str)})

Top 20 teams in 2019 according to FIFA rankings
top20teams = ["TeamBelgium", "TeamFrance", "TeamBrazil", "TeamEngland", "TeamPortugal
→˓",

"TeamCroatia", "TeamSpain", "TeamUruguay", "TeamSwitzerland",
→˓"TeamDenmark",

"TeamArgentina", "TeamGermany", "TeamColombia", "TeamItaly",
→˓"TeamNetherlands",

"TeamChile", "TeamSweden", "TeamMexico", "TeamPoland", "TeamIran"]

np.random.seed(0)

Plot 2D embeddings with country labels
def plot_clusters(hue):

plt.figure(figsize=(12, 12))
plt.title("{} embeddings".format(hue).capitalize())
ax = sns.scatterplot(data=plot_df[plot_df.continent!="unk"],

x="embedding1", y="embedding2", hue=hue)
texts = []
for i, point in plot_df.iterrows():

if point["teams"] in top20teams or np.random.random() < 0.1:
texts.append(plt.text(point['embedding1']+0.02,

(continues on next page)

124 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

(continued from previous page)

point['embedding2']+0.01,
str(point["teams"])))

adjust_text(texts)

Results visualization

plot_clusters("continent")
plot_clusters("cluster")

3.5. Examples 125

AmpliGraph, Release 1.3.2

3.6 Tutorials

For a comprehensive theoretical and hands-on overview of KGE models and hands-on AmpliGraph, check out our
ECAI-20 Tutorial (Slides + Recording + Colab Notebook).

The following Jupyter notebooks will guide you through the most important features of AmpliGraph:

• AmpliGraph basics: training, saving and restoring a model, evaluating a model, discover new links, visualize
embeddings. [Jupyter notebook] [Colab notebook]

• Link-based clustering and classification: how to use the knowledge embeddings generated by a graph of inter-
national football matches in clustering and classification tasks. [Jupyter notebook] [Colab notebook]

Additional examples and code snippets are available here.

126 Chapter 3. How to Cite

https://kge-tutorial-ecai2020.github.io/
https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/AmpliGraphBasicsTutorial.ipynb
https://colab.research.google.com/drive/1rylqOnm992AdP9z1aW8metlKpPuBTRGD
https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/ClusteringAndClassificationWithEmbeddings.ipynb
https://colab.research.google.com/drive/1QUphvcFvNsWyRZM_J5ahsLhEHJY4SjyS

AmpliGraph, Release 1.3.2

3.7 Performance

3.7.1 Predictive Performance

We report the filtered MR, MRR, Hits@1,3,10 for the most common datasets used in literature.

Results are computed assigning the worst rank to a positive test triple in case of tie with its synthetic neg-
atives. Although this is the most conservative approach, some published literature may adopt an evaluation
protocol that assigns the best rank instead. Check out the documentation of ampligraph.evaluation.
evaluate_performance() for details.

Note: On ConvE Evaluation. Results reported in the literature for ConvE are based on the alternative 1-N evaluation
protocol which requires that reciprocal relations are added to the dataset [DMSR18]:

𝐷 ← (𝐷,𝐷𝑟𝑒𝑐𝑖𝑝)

𝐷𝑟𝑒𝑐𝑖𝑝 ← { (𝑜, 𝑝𝑟, 𝑠) | ∀𝑥 ∈ 𝐷,𝑥 = (𝑠, 𝑝, 𝑜)}

During training each unique pair of subject and predicate can predict all possible object scores for that pairs, and
therefore object corruptions evaluation can be performed with a single forward pass:

𝐶𝑜𝑛𝑣𝐸(𝑠, 𝑝, 𝑜)

In the standard corruption procedure the subject entity is replaced by corruptions:

𝐶𝑜𝑛𝑣𝐸(𝑠𝑐𝑜𝑟𝑟, 𝑝, 𝑜),

However in the 1-N protocol subject corruptions are interpreted as object corruptions of the reciprocal relation:

𝐶𝑜𝑛𝑣𝐸(𝑜, 𝑝𝑟, 𝑠𝑐𝑜𝑟𝑟)

To reproduce the results reported in the literature using the 1-N evaluation protocol, add re-
ciprocal relations by specifying add_reciprocal_rels in the dataset loader function, e.g.
load_fb15k(add_reciprocal_rels=True), and run the evaluation protocol with object corruptions
by specifying corrupt_sides='o'.

Results obtained with the standard evaluation protocol are labeled ConvE, while those obtained with the 1-N protocol
are marked ConvE(1-N).

3.7. Performance 127

AmpliGraph, Release 1.3.2

3.7.2 FB15K-237

ModelMR MRR Hits@1Hits@3Hits@10Hyperparameters
TransE208 0.31 0.22 0.35 0.50 k: 400; epochs: 4000; eta: 30; loss: multiclass_nll; regularizer: LP;

regularizer_params: lambda: 0.0001; p: 2; optimizer: adam; opti-
mizer_params: lr: 0.0001; embedding_model_params: norm: 1; normal-
ize_ent_emb: false; seed: 0; batches_count: 64;

Dist-
Mult

199 0.31 0.22 0.35 0.49 k: 300; epochs: 4000; eta: 50; loss: multiclass_nll; regularizer: LP;
regularizer_params: lambda: 0.0001; p: 3; optimizer: adam; op-
timizer_params: lr: 0.00005; seed: 0; batches_count: 50; normal-
ize_ent_emb: false;

Com-
plEx

184 0.32 0.23 0.35 0.50 k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; opti-
mizer_params: lr: 0.00005; seed: 0; regularizer: LP; regularizer_params:
lambda: 0.0001; p: 3; batches_count: 64;

HolE 184 0.31 0.22 0.34 0.49 k: 350; epochs: 4000; eta: 50; loss: multiclass_nll; regularizer: LP;
regularizer_params: lambda: 0.0001; p: 2; optimizer: adam; opti-
mizer_params: lr: 0.0001; seed: 0; batches_count: 64;

Con-
vKB

327 0.23 0.15 0.25 0.40 k: 200; epochs: 500; eta: 10; loss: multiclass_nll; loss_params:
{} optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ num_filters: 32, filter_sizes: 1, dropout: 0.1};
seed: 0; batches_count: 300;

ConvE1060 0.26 0.19 0.28 0.38 k: 200; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
100;

ConvE(1-
N)

234 0.32 0.23 0.35 0.50 k: 200; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
100;

Note: FB15K-237 validation and test sets include triples with entities that do not occur in the training set. We found
8 unseen entities in the validation set and 29 in the test set. In the experiments we excluded the triples where such
entities appear (9 triples in from the validation set and 28 from the test set).

128 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

3.7.3 WN18RR

ModelMR MRR Hits@1Hits@3Hits@10Hyperparameters
TransE2692 0.22 0.03 0.37 0.54 k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam;

optimizer_params: lr: 0.0001; regularizer: LP; regularizer_params:
lambda: 0.0001; p: 2; seed: 0; normalize_ent_emb: false; embed-
ding_model_params: norm: 1; batches_count: 150;

Dist-
Mult

5531 0.47 0.43 0.48 0.53 k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; op-
timizer_params: lr: 0.0001; regularizer: LP; regularizer_params: lambda:
0.0001; p: 2; seed: 0; normalize_ent_emb: false; batches_count: 100;

Com-
plEx

4177 0.51 0.46 0.53 0.58 k: 200; epochs: 4000; eta: 20; loss: multiclass_nll; loss_params: margin:
1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; regularizer:
LP; regularizer_params: lambda: 0.05; p: 3; batches_count: 10;

HolE 7028 0.47 0.44 0.48 0.53 k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params:
margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0;
batches_count: 50;

Con-
vKB

3652 0.39 0.33 0.42 0.48 k: 200; epochs: 500; eta: 10; loss: multiclass_nll; loss_params:
{} optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ num_filters: 32, filter_sizes: 1, dropout: 0.1};
seed: 0; batches_count: 300;

ConvE5346 0.45 0.42 0.47 0.52 k: 200; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
100;

ConvE(1-
N)

4842 0.48 0.45 0.49 0.54 k: 200; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
100;

Note: WN18RR validation and test sets include triples with entities that do not occur in the training set. We found
198 unseen entities in the validation set and 209 in the test set. In the experiments we excluded the triples where such
entities appear (210 triples in from the validation set and 210 from the test set).

3.7. Performance 129

AmpliGraph, Release 1.3.2

3.7.4 YAGO3-10

ModelMR MRR Hits@1Hits@3Hits@10Hyperparameters
TransE1264 0.51 0.41 0.57 0.67 k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; op-

timizer_params: lr: 0.0001; regularizer: LP; regularizer_params: lambda:
0.0001; p: 2; embedding_model_params: norm: 1; normalize_ent_emb:
false; seed: 0; batches_count: 100;

Dist-
Mult

1107 0.50 0.41 0.55 0.66 k: 350; epochs: 4000; eta: 50; loss: multiclass_nll; optimizer: adam; op-
timizer_params: lr: 5e-05; regularizer: LP; regularizer_params: lambda:
0.0001; p: 3; seed: 0; normalize_ent_emb: false; batches_count: 100;

Com-
plEx

1227 0.49 0.40 0.54 0.66 k: 350; epochs: 4000; eta: 30; loss: multiclass_nll; optimizer: adam; op-
timizer_params: lr: 5e-05; regularizer: LP; regularizer_params: lambda:
0.0001; p: 3; seed: 0; batches_count: 100

HolE 6776 0.50 0.42 0.56 0.65 k: 350; epochs: 4000; eta: 30; loss: self_adversarial; loss_params: alpha:
1; margin: 0.5; optimizer: adam; optimizer_params: lr: 0.0001; seed: 0;
batches_count: 100

Con-
vKB

2820 0.30 0.21 0.34 0.50 k: 200; epochs: 500; eta: 10; loss: multiclass_nll; loss_params:
{} optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ num_filters: 32, filter_sizes: 1, dropout: 0.1};
seed: 0; batches_count: 3000;

ConvE6063 0.40 0.33 0.42 0.53 k: 300; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
300;

ConvE(1-
N)

2741 0.55 0.48 0.60 0.69 k: 300; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
300;

Note: YAGO3-10 validation and test sets include triples with entities that do not occur in the training set. We found
22 unseen entities in the validation set and 18 in the test set. In the experiments we excluded the triples where such
entities appear (22 triples in from the validation set and 18 from the test set).

130 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

3.7.5 FB15K

Warning: The dataset includes a large number of inverse relations, and its use in experiments has been deprecated.
Use FB15k-237 instead.

ModelMR MRR Hits@1Hits@3Hits@10Hyperparameters
TransE44 0.63 0.50 0.73 0.85 k: 150; epochs: 4000; eta: 10; loss: multiclass_nll; optimizer: adam;

optimizer_params: lr: 5e-5; regularizer: LP; regularizer_params: lambda:
0.0001; p: 3; embedding_model_params: norm: 1; normalize_ent_emb:
false; seed: 0; batches_count: 100;

Dist-
Mult

179 0.78 0.74 0.82 0.86 k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: mar-
gin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; normal-
ize_ent_emb: false; batches_count: 50;

Com-
plEx

184 0.80 0.76 0.82 0.86 k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params:
margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0;
batches_count: 100;

HolE 216 0.80 0.76 0.83 0.87 k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params:
margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0;
batches_count: 50;

Con-
vKB

331 0.65 0.55 0.71 0.82 k: 200; epochs: 500; eta: 10; loss: multiclass_nll; loss_params:
{} optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ num_filters: 32, filter_sizes: 1, dropout: 0.1};
seed: 0; batches_count: 300;

ConvE385 0.50 0.42 0.52 0.66 k: 300; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
100;

ConvE(1-
N)

55 0.80 0.74 0.84 0.89 k: 300; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
100;

3.7.6 WN18

Warning: The dataset includes a large number of inverse relations, and its use in experiments has been deprecated.
Use WN18RR instead.

3.7. Performance 131

AmpliGraph, Release 1.3.2

ModelMR MRR Hits@1Hits@3Hits@10Hyperparameters
TransE260 0.66 0.44 0.88 0.95 k: 150; epochs: 4000; eta: 10; loss: multiclass_nll; optimizer: adam;

optimizer_params: lr: 5e-5; regularizer: LP; regularizer_params: lambda:
0.0001; p: 3; embedding_model_params: norm: 1; normalize_ent_emb:
false; seed: 0; batches_count: 100;

Dist-
Mult

675 0.82 0.73 0.92 0.95 k: 200; epochs: 4000; eta: 20; loss: nll; loss_params: margin: 1; opti-
mizer: adam; optimizer_params: lr: 0.0005; seed: 0; normalize_ent_emb:
false; batches_count: 50;

Com-
plEx

726 0.94 0.94 0.95 0.95 k: 200; epochs: 4000; eta: 20; loss: nll; loss_params: margin: 1; op-
timizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count:
50;

HolE 665 0.94 0.93 0.94 0.95 k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params:
margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0;
batches_count: 50;

Con-
vKB

331 0.80 0.69 0.90 0.94 k: 200; epochs: 500; eta: 10; loss: multiclass_nll; loss_params:
{} optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ num_filters: 32, filter_sizes: 1, dropout: 0.1};
seed: 0; batches_count: 300;

ConvE492 0.93 0.91 0.94 0.95 k: 300; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
100;

ConvE(1-
N)

436 0.95 0.93 0.95 0.95 k: 300; epochs: 4000; loss: bce; loss_params: {label_smoothing=0.1}
optimizer: adam; optimizer_params: lr: 0.0001; embed-
ding_model_params:{ conv_filters: 32, conv_kernel_size: 3,
dropout_embed: 0.2, dropout_conv: 0.1, dropout_dense: 0.3,
use_batchnorm: True, use_bias: True}; seed: 0; batches_count:
100;

To reproduce the above results:

$ cd experiments
$ python predictive_performance.py

Note: Running predictive_performance.py on all datasets, for all models takes ~115 hours on an Intel
Xeon Gold 6142, 64 GB Ubuntu 16.04 box equipped with a Tesla V100 16GB. The long running time is mostly due
to the early stopping configuration (see section below).

Note: All of the experiments above were conducted with early stopping on half the validation set. Typically, the
validation set can be found in X['valid']. We only used half the validation set so the other half is available for
hyperparameter tuning.

The exact early stopping configuration is as follows:

• x_valid: validation[::2]

• criteria: mrr

• x_filter: train + validation + test

• stop_interval: 4

132 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• burn_in: 0

• check_interval: 50

Note that early stopping adds a significant computational burden to the learning procedure. To lessen it, you may
either decrease the validation set, the stop interval, the check interval, or increase the burn in.

Note: Due to a combination of model and dataset size it is not possible to evaluate Yago3-10 with ConvKB on the
GPU. The fastest way to replicate the results above is to train ConvKB with Yago3-10 on a GPU using the hyper-
parameters described above (~15hrs on GTX 1080Ti), and then evaluate the model in CPU only mode (~15 hours on
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz).

Note: ConvKB with early-stopping evaluation protocol does not fit into GPU memory, so instead is just trained for a
set number of epochs.

Experiments can be limited to specific models-dataset combinations as follows:

$ python predictive_performance.py -h
usage: predictive_performance.py [-h] [-d {fb15k,fb15k-237,wn18,wn18rr,yago310}]

[-m {complex,transe,distmult,hole,convkb,conve}]

optional arguments:
-h, --help show this help message and exit
-d {fb15k,fb15k-237,wn18,wn18rr,yago310}, --dataset {fb15k,fb15k-237,wn18,wn18rr,

→˓yago310}
-m {complex,transe,distmult,hole,convkb,conve}, --model {complex,transe,distmult,

→˓hole,convkb,conve}

3.7.7 Runtime Performance

Training the models on FB15K-237 (k=100, eta=10, batches_count=100, loss=multiclass_nll),
on an Intel Xeon Gold 6142, 64 GB Ubuntu 16.04 box equipped with a Tesla V100 16GB gives the following runtime
report:

model seconds/epoch
ComplEx 1.33
TransE 1.22
DistMult 1.20
HolE 1.30
ConvKB 2.83
ConvE 1.13

Note: ConvE is trained with bce loss instead of multiclass_nll.

3.7. Performance 133

AmpliGraph, Release 1.3.2

3.8 Bibliography

3.9 Changelog

3.9.1 1.3.2

25 Aug 2020

• Added constant initializer (#205)

• Ranking strategies for breaking ties (#212)

• ConvE Bug Fixes (#210, #194)

• Efficient batch sampling (#202)

• Added pointer to documentation for large graph mode and Docs for Optimizer (#216)

3.9.2 1.3.1

18 Mar 2020

• Minor bug fix in ConvE (#189)

3.9.3 1.3.0

9 Mar 2020

• ConvE model Implementation (#178)

• Changes to evaluate_performance API (#183)

• Option to add reciprocal relations (#181)

• Minor fixes to ConvKB (#168, #167)

• Minor fixes in large graph mode (#174, #172, #169)

• Option to skip unseen entities checks when train_test_split is used (#163)

• Stability of NLL losses (#170)

• ICLR-20 calibration paper experiments added in branch paper/ICLR-20

3.9.4 1.2.0

22 Oct 2019

• Probability calibration using Platt scaling, both with provided negatives or synthetic negative statements (#131)

• Added ConvKB model

• Added WN11, FB13 loaders (datasets with ground truth positive and negative triples) (#138)

• Continuous integration with CircleCI, integrated on GitHub (#127)

• Refactoring of models into separate files (#104)

• Fixed bug where the number of epochs did not exactly match the provided number by the user (#135)

134 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

• Fixed some bugs on RandomBaseline model (#133, #134)

• Fixed some bugs on discover_facts with strategies “exhaustive” and “graph_degree”

• Fixed bug on subsequent calls of model.predict on the GPU (#137)

3.9.5 1.1.0

16 Aug 2019

• Support for large number of entities (#61, #113)

• Faster evaluation protocol (#74)

• New Knowledge discovery APIs: discover facts, clustering, near-duplicates detection, topn query (#118)

• API change: model.predict() does not return ranks anymore

• API change: friendlier ranking API output (#101)

• Implemented nuclear-3 norm (#23)

• Jupyter notebook tutorials: AmpliGraph basics (#67) and Link-based clustering

• Random search for hyper-parameter tuning (#106)

• Additional initializers (#112)

• Experiment campaign with multiclass-loss

• System-wide bugfixes and minor improvements

3.9.6 1.0.3

7 Jun 2019

• Fixed regression in RandomBaseline (#94)

• Added TensorBoard Embedding Projector support (#86)

• Minor bugfixing (#87, #47)

3.9.7 1.0.2

19 Apr 2019

• Added multiclass loss (#24 and #22)

• Updated the negative generation to speed up evaluation for default protocol.(#74)

• Support for visualization of embeddings using Tensorboard (#16)

• Save models with custom names. (#71)

• Quick fix for the overflow issue for datasets with a million entities. (#61)

• Fixed issues in train_test_split_no_unseen API and updated api (#68)

• Added unit test cases for better coverage of the code(#75)

• Corrupt_sides : can now generate corruptions for training on both sides, or only on subject or object

• Better error messages

3.9. Changelog 135

AmpliGraph, Release 1.3.2

• Reduced logging verbosity

• Added YAGO3-10 experiments

• Added MD5 checksum for datasets (#47)

• Addressed issue of ambiguous dataset loaders (#59)

• Renamed ‘type’ parameter in models.get_embeddings to fix masking built-in function

• Updated String comparison to use equality instead of identity.

• Moved save_model and restore_model to ampligraph.utils (but existing API will remain for several releases).

• Other minor issues (#63, #64, #65, #66)

3.9.8 1.0.1

22 Mar 2019

• evaluation protocol now ranks object and subjects corruptions separately

• Corruption generation can now use entities from current batch only

• FB15k-237, WN18RR loaders filter out unseen triples by default

• Removed some unused arguments

• Improved documentation

• Minor bugfixing

3.9.9 1.0.0

16 Mar 2019

• TransE

• DistMult

• ComplEx

• FB15k, WN18, FB15k-237, WN18RR, YAGO3-10 loaders

• generic loader for csv files

• RDF, ntriples loaders

• Learning to rank evaluation protocol

• Tensorflow-based negatives generation

• save/restore capabilities for models

• pairwise loss

• nll loss

• self-adversarial loss

• absolute margin loss

• Model selection routine

• LCWA corruption strategy for training and eval

• rank, Hits@N, MRR scores functions

136 Chapter 3. How to Cite

AmpliGraph, Release 1.3.2

3.10 About

AmpliGraph is developed and maintained by Accenture Labs Dublin.

3.10.1 Contact us

You can contact us by email at about@ampligraph.org.

Join the conversation on Slack

3.10.2 How to Cite

If you like AmpliGraph and you use it in your project, why not starring the project on GitHub!

If you instead use AmpliGraph in an academic publication, cite as:

@misc{ampligraph,
author= {Luca Costabello and

Sumit Pai and
Chan Le Van and
Rory McGrath and
Nicholas McCarthy and
Pedro Tabacof},

title = {{AmpliGraph: a Library for Representation Learning on Knowledge Graphs}},
month = mar,
year = 2019,
doi = {10.5281/zenodo.2595043},
url = {https://doi.org/10.5281/zenodo.2595043}

}

3.10.3 Contributors

Active contributors (in alphabetical order)

• Luca Costabello

• Adrianna Janik

• Chan Le Van

• Nicholas McCarthy

• Rory McGrath

• Sumit Pai

Past contributors

• Pedro Tabacof

3.10. About 137

https://www.accenture.com/us-en/accenture-technology-labs-index
mailto:about@ampligraph.org
https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg
https://GitHub.com/Accenture/AmpliGraph/stargazers/
https://doi.org/10.5281/zenodo.2595043
http://github.com/lukostaz
https://github.com/adrijanik
http://github.com/chanlevan
http://github.com/NicholasMcCarthy
http://github.com/rorymcgrath
http://github.com/sumitpai
http://github.com/tabacof

AmpliGraph, Release 1.3.2

3.10.4 License

AmpliGraph is licensed under the Apache 2.0 License.

138 Chapter 3. How to Cite

BIBLIOGRAPHY

[aC15] Danqi and Chen. Observed versus latent features for knowledge base and text inference. In 3rd
Workshop on Continuous Vector Space Models and Their Compositionality. ACL - Association for
Computational Linguistics, July 2015. URL: https://www.microsoft.com/en-us/research/publication/
observed-versus-latent-features-for-knowledge-base-and-text-inference/.

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.
Dbpedia: a nucleus for a web of open data. In The semantic web, 722–735. Springer, 2007.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of Ma-
chine Learning Research, 13(Feb):281–305, 2012.

[BHBL11] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: the story so far. In Semantic services,
interoperability and web applications: emerging concepts, 205–227. IGI Global, 2011.

[BEP+08] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collaboratively
created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, 1247–1250. AcM, 2008.

[BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Trans-
lating embeddings for modeling multi-relational data. In Advances in neural information processing
systems, 2787–2795. 2013.

[DMSR18] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowl-
edge graph embeddings. In Procs of AAAI. 2018. URL: https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/17366.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
249–256. 2010.

[HOSM17] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge transfer for out-
of-knowledge-base entities: A graph neural network approach. IJCAI International Joint Conference on
Artificial Intelligence, pages 1802–1808, 2017.

[HS17] Katsuhiko Hayashi and Masashi Shimbo. On the equivalence of holographic and complex embeddings
for link prediction. CoRR, 2017. URL: http://arxiv.org/abs/1702.05563, arXiv:1702.05563.

[KBK17] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base completion: baselines strike back.
CoRR, 2017. URL: http://arxiv.org/abs/1705.10744, arXiv:1705.10744.

[LUO18] Timothee Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for
knowledge base completion. In International Conference on Machine Learning, 2869–2878. 2018.

[LJ18] Lisha Li and Kevin Jamieson. Hyperband: a novel bandit-based approach to hyperparameter optimiza-
tion. Journal of Machine Learning Research, 18:1–52, 2018.

139

https://www.microsoft.com/en-us/research/publication/observed-versus-latent-features-for-knowledge-base-and-text-inference/
https://www.microsoft.com/en-us/research/publication/observed-versus-latent-features-for-knowledge-base-and-text-inference/
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
http://arxiv.org/abs/1702.05563
https://arxiv.org/abs/1702.05563
http://arxiv.org/abs/1705.10744
https://arxiv.org/abs/1705.10744

AmpliGraph, Release 1.3.2

[MBS13] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. Yago3: a knowledge base from multi-
lingual wikipedias. In CIDR. 2013.

[Mil95] George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41,
1995.

[NNNP18] Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A Novel Embedding Model
for Knowledge Base Completion Based on Convolutional Neural Network. In Proceedings of the 16th
Annual Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), 327–333. 2018.

[NMTG16] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational ma-
chine learning for knowledge graphs. Procs of the IEEE, 104(1):11–33, 2016.

[NRP+16] Maximilian Nickel, Lorenzo Rosasco, Tomaso A Poggio, and others. Holographic embeddings of knowl-
edge graphs. In AAAI, 1955–1961. 2016.

[P+99] John Platt and others. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

[Pri10] Princeton. About wordnet. Web, 2010. https://wordnet.princeton.edu.

[SCMN13] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural ten-
sor networks for knowledge base completion. In Advances in neural information processing systems,
926–934. 2013.

[SKW07] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge. In
Procs of WWW, 697–706. ACM, 2007.

[SDNT19] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: knowledge graph embedding by
relational rotation in complex space. In International Conference on Learning Representations. 2019.
URL: https://openreview.net/forum?id=HkgEQnRqYQ.

[TC20] Pedro Tabacof and Luca Costabello. Probability Calibration for Knowledge Graph Embedding Models.
In ICLR. 2020.

[TCP+15] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael Ga-
mon. Representing text for joint embedding of text and knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, 1499–1509. 2015.

[TWR+16] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International Conference on Machine Learning, 2071–2080.
2016.

[YYH+14] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations
for learning and inference in knowledge bases. arXiv preprint, 2014.

140 Bibliography

https://openreview.net/forum?id=HkgEQnRqYQ

PYTHON MODULE INDEX

d
ampligraph.datasets, 9
ampligraph.discovery, 102

e
ampligraph.evaluation, 88

u
ampligraph.utils, 111

141

AmpliGraph, Release 1.3.2

142 Python Module Index

INDEX

Symbols
__init__() (ampligraph.latent_features.AbsoluteMarginLoss

method), 77
__init__() (ampligraph.latent_features.AdagradOptimizer

method), 85
__init__() (ampligraph.latent_features.AdamOptimizer

method), 84
__init__() (ampligraph.latent_features.BCELoss

method), 80
__init__() (ampligraph.latent_features.ComplEx

method), 38
__init__() (ampligraph.latent_features.Constant

method), 83
__init__() (ampligraph.latent_features.ConvE

method), 51
__init__() (ampligraph.latent_features.ConvKB

method), 58
__init__() (ampligraph.latent_features.DistMult

method), 31
__init__() (ampligraph.latent_features.EmbeddingModel

method), 64
__init__() (ampligraph.latent_features.HolE

method), 44
__init__() (ampligraph.latent_features.Initializer

method), 74
__init__() (ampligraph.latent_features.LPRegularizer

method), 80
__init__() (ampligraph.latent_features.Loss

method), 71
__init__() (ampligraph.latent_features.MomentumOptimizer

method), 87
__init__() (ampligraph.latent_features.NLLLoss

method), 78
__init__() (ampligraph.latent_features.NLLMulticlass

method), 79
__init__() (ampligraph.latent_features.PairwiseLoss

method), 76
__init__() (ampligraph.latent_features.RandomBaseline

method), 21
__init__() (ampligraph.latent_features.RandomNormal

method), 81
__init__() (ampligraph.latent_features.RandomUniform

method), 82
__init__() (ampligraph.latent_features.Regularizer

method), 73
__init__() (ampligraph.latent_features.SGDOptimizer

method), 86
__init__() (ampligraph.latent_features.SelfAdversarialLoss

method), 78
__init__() (ampligraph.latent_features.TransE

method), 24
__init__() (ampligraph.latent_features.Xavier

method), 83
_apply() (ampligraph.latent_features.Loss method),

72
_apply() (ampligraph.latent_features.Regularizer

method), 73
_display_params() (ampli-

graph.latent_features.Initializer method),
75

_fn() (ampligraph.latent_features.EmbeddingModel
method), 69

_get_model_loss() (ampli-
graph.latent_features.EmbeddingModel
method), 70

_get_np_initializer() (ampli-
graph.latent_features.Initializer method),
74

_get_tf_initializer() (ampli-
graph.latent_features.Initializer method),
74

_init_hyperparams() (ampli-
graph.latent_features.Initializer method),
74

_init_hyperparams() (ampli-
graph.latent_features.Loss method), 72

_init_hyperparams() (ampli-
graph.latent_features.Regularizer method),
73

_initialize_early_stopping() (ampli-
graph.latent_features.EmbeddingModel
method), 70

_initialize_eval_graph() (ampli-
graph.latent_features.EmbeddingModel

143

AmpliGraph, Release 1.3.2

method), 71
_initialize_parameters() (ampli-

graph.latent_features.EmbeddingModel
method), 70

_inputs_check() (ampligraph.latent_features.Loss
method), 72

_load_model_from_trained_params() (ampli-
graph.latent_features.EmbeddingModel
method), 70

_perform_early_stopping_test() (ampli-
graph.latent_features.EmbeddingModel
method), 70

_save_trained_params() (ampli-
graph.latent_features.EmbeddingModel
method), 70

A
AbsoluteMarginLoss (class in ampli-

graph.latent_features), 77
AdagradOptimizer (class in ampli-

graph.latent_features), 85
AdamOptimizer (class in ampligraph.latent_features),

84
ampligraph.datasets (module), 9
ampligraph.discovery (module), 102
ampligraph.evaluation (module), 88
ampligraph.utils (module), 111
apply() (ampligraph.latent_features.Loss method), 72
apply() (ampligraph.latent_features.Regularizer

method), 73

B
BCELoss (class in ampligraph.latent_features), 79

C
calibrate() (ampligraph.latent_features.ComplEx

method), 41
calibrate() (ampligraph.latent_features.ConvE

method), 54
calibrate() (ampligraph.latent_features.ConvKB

method), 61
calibrate() (ampligraph.latent_features.DistMult

method), 34
calibrate() (ampli-

graph.latent_features.EmbeddingModel
method), 67

calibrate() (ampligraph.latent_features.HolE
method), 48

calibrate() (ampligraph.latent_features.TransE
method), 27

ComplEx (class in ampligraph.latent_features), 37
configure_evaluation_protocol() (ampli-

graph.latent_features.EmbeddingModel
method), 71

Constant (class in ampligraph.latent_features), 83
ConvE (class in ampligraph.latent_features), 50
ConvKB (class in ampligraph.latent_features), 57
create_mappings() (in module ampli-

graph.evaluation), 102
create_tensorboard_visualizations() (in

module ampligraph.utils), 113

D
dataframe_to_triples() (in module ampli-

graph.utils), 115
discover_facts() (in module ampli-

graph.discovery), 103
DistMult (class in ampligraph.latent_features), 30

E
EmbeddingModel (class in ampli-

graph.latent_features), 64
end_evaluation() (ampli-

graph.latent_features.EmbeddingModel
method), 71

evaluate_performance() (in module ampli-
graph.evaluation), 94

F
find_clusters() (in module ampligraph.discovery),

104
find_duplicates() (in module ampli-

graph.discovery), 107
fit() (ampligraph.latent_features.ComplEx method),

39
fit() (ampligraph.latent_features.ConvE method), 53
fit() (ampligraph.latent_features.ConvKB method), 59
fit() (ampligraph.latent_features.DistMult method),

32
fit() (ampligraph.latent_features.EmbeddingModel

method), 66
fit() (ampligraph.latent_features.HolE method), 46
fit() (ampligraph.latent_features.RandomBaseline

method), 21
fit() (ampligraph.latent_features.TransE method), 25

G
generate_corruptions_for_eval() (in mod-

ule ampligraph.evaluation), 92
generate_corruptions_for_fit() (in module

ampligraph.evaluation), 93
get_embedding_model_params() (ampli-

graph.latent_features.EmbeddingModel
method), 70

get_embeddings() (ampli-
graph.latent_features.ComplEx method),
41

144 Index

AmpliGraph, Release 1.3.2

get_embeddings() (ampli-
graph.latent_features.ConvE method), 53

get_embeddings() (ampli-
graph.latent_features.ConvKB method),
60

get_embeddings() (ampli-
graph.latent_features.DistMult method),
33

get_embeddings() (ampli-
graph.latent_features.EmbeddingModel
method), 66

get_embeddings() (ampli-
graph.latent_features.HolE method), 47

get_embeddings() (ampli-
graph.latent_features.TransE method), 26

get_entity_initializer() (ampli-
graph.latent_features.Initializer method),
75

get_hyperparameter_dict() (ampli-
graph.latent_features.ComplEx method),
41

get_hyperparameter_dict() (ampli-
graph.latent_features.ConvE method), 54

get_hyperparameter_dict() (ampli-
graph.latent_features.ConvKB method),
60

get_hyperparameter_dict() (ampli-
graph.latent_features.DistMult method),
34

get_hyperparameter_dict() (ampli-
graph.latent_features.EmbeddingModel
method), 67

get_hyperparameter_dict() (ampli-
graph.latent_features.HolE method), 47

get_hyperparameter_dict() (ampli-
graph.latent_features.RandomBaseline
method), 23

get_hyperparameter_dict() (ampli-
graph.latent_features.TransE method), 27

get_relation_initializer() (ampli-
graph.latent_features.Initializer method),
75

get_state() (ampligraph.latent_features.Loss
method), 71

get_state() (ampligraph.latent_features.Regularizer
method), 73

H
hits_at_n_score() (in module ampli-

graph.evaluation), 91
HolE (class in ampligraph.latent_features), 44

I
Initializer (class in ampligraph.latent_features), 74

L
load_fb13() (in module ampligraph.datasets), 16
load_fb15k() (in module ampligraph.datasets), 13
load_fb15k_237() (in module ampli-

graph.datasets), 10
load_from_csv() (in module ampligraph.datasets),

18
load_from_ntriples() (in module ampli-

graph.datasets), 19
load_from_rdf() (in module ampligraph.datasets),

19
load_wn11() (in module ampligraph.datasets), 15
load_wn18() (in module ampligraph.datasets), 14
load_wn18rr() (in module ampligraph.datasets), 11
load_yago3_10() (in module ampligraph.datasets),

12
Loss (class in ampligraph.latent_features), 71
LPRegularizer (class in ampligraph.latent_features),

80

M
minimize() (ampligraph.latent_features.AdagradOptimizer

method), 85
minimize() (ampligraph.latent_features.AdamOptimizer

method), 84
minimize() (ampligraph.latent_features.MomentumOptimizer

method), 87
minimize() (ampligraph.latent_features.SGDOptimizer

method), 86
MomentumOptimizer (class in ampli-

graph.latent_features), 87
mr_score() (in module ampligraph.evaluation), 90
mrr_score() (in module ampligraph.evaluation), 89

N
NLLLoss (class in ampligraph.latent_features), 78
NLLMulticlass (class in ampligraph.latent_features),

79

P
PairwiseLoss (class in ampligraph.latent_features),

76
predict() (ampligraph.latent_features.ComplEx

method), 41
predict() (ampligraph.latent_features.ConvE

method), 54
predict() (ampligraph.latent_features.ConvKB

method), 61
predict() (ampligraph.latent_features.DistMult

method), 34
predict() (ampligraph.latent_features.EmbeddingModel

method), 67
predict() (ampligraph.latent_features.HolE method),

47

Index 145

AmpliGraph, Release 1.3.2

predict() (ampligraph.latent_features.RandomBaseline
method), 22

predict() (ampligraph.latent_features.TransE
method), 27

predict_proba() (ampli-
graph.latent_features.ComplEx method),
43

predict_proba() (ampli-
graph.latent_features.ConvE method), 56

predict_proba() (ampli-
graph.latent_features.ConvKB method),
63

predict_proba() (ampli-
graph.latent_features.DistMult method),
36

predict_proba() (ampli-
graph.latent_features.EmbeddingModel
method), 69

predict_proba() (ampligraph.latent_features.HolE
method), 50

predict_proba() (ampli-
graph.latent_features.TransE method), 29

Q
query_topn() (in module ampligraph.discovery), 110

R
RandomBaseline (class in ampli-

graph.latent_features), 20
RandomNormal (class in ampligraph.latent_features),

81
RandomUniform (class in ampligraph.latent_features),

82
rank_score() (in module ampligraph.evaluation), 88
Regularizer (class in ampligraph.latent_features), 72
restore_model() (in module ampligraph.utils), 112
restore_model_params() (ampli-

graph.latent_features.EmbeddingModel
method), 70

S
save_model() (in module ampligraph.utils), 112
select_best_model_ranking() (in module

ampligraph.evaluation), 97
SelfAdversarialLoss (class in ampli-

graph.latent_features), 77
set_filter_for_eval() (ampli-

graph.latent_features.EmbeddingModel
method), 71

SGDOptimizer (class in ampligraph.latent_features),
86

T
to_idx() (in module ampligraph.evaluation), 102

train_test_split_no_unseen() (in module
ampligraph.evaluation), 100

TransE (class in ampligraph.latent_features), 23

U
update_feed_dict() (ampli-

graph.latent_features.AdagradOptimizer
method), 85

update_feed_dict() (ampli-
graph.latent_features.AdamOptimizer method),
84

update_feed_dict() (ampli-
graph.latent_features.MomentumOptimizer
method), 87

update_feed_dict() (ampli-
graph.latent_features.SGDOptimizer method),
86

X
Xavier (class in ampligraph.latent_features), 82

146 Index

	Key Features
	Modules
	How to Cite
	Bibliography
	Python Module Index
	Index

