

    
      
          
            
  
AmpliGraph

Open source Python library that predicts links between concepts in a knowledge graph.

Go to the GitHub repository [https://github.com/Accenture/AmpliGraph/] [image: ImageLink] [https://github.com/Accenture/AmpliGraph/]





Join the conversation on Slack [https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg] [image: ImageLink2] [https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg>]





AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning
that deals with supervised learning on knowledge graphs.

[image: _images/kg_lp.png]
Use AmpliGraph if you need to:


	Discover new knowledge from an existing knowledge graph.


	Complete large knowledge graphs with missing statements.


	Generate stand-alone knowledge graph embeddings.


	Develop and evaluate a new relational model.




AmpliGraph’s machine learning models generate knowledge graph embeddings, vector representations of concepts in a metric space:

[image: _images/kg_lp_step1.png]
It then combines embeddings with model-specific scoring functions to predict unseen and novel links:

[image: _images/kg_lp_step2.png]

Key Features


	Intuitive APIs: AmpliGraph APIs are designed to reduce the code amount required to learn models that predict links




in knowledge graphs. The new version AmpliGraph 2 APIs are in Keras style, making the user experience even smoother.
* GPU-Ready: AmpliGraph is built on top of TensorFlow 2, and it is designed to run seamlessly on CPU and GPU devices - to speed-up training.
* Extensible: Roll your own knowledge graph embeddings model by extending AmpliGraph base estimators.



Modules

AmpliGraph includes the following submodules:


	Datasets: helper functions to load datasets (knowledge graphs).


	Models: knowledge graph embedding models. AmpliGraph offers TransE, DistMult, ComplEx, HolE, RotatE (More to come!)


	Evaluation: metrics and evaluation protocols to assess the predictive power of the models.


	Discovery: High-level convenience APIs for knowledge discovery (discover new facts, cluster entities, predict near duplicates).


	Compat: submodule that extends the compatibility of AmpliGraph APIs to those of AmpliGraph 1.x for the user already familiar with them.






How to Cite

If you like AmpliGraph and you use it in your project, why not starring the project on GitHub [https://github.com/Accenture/AmpliGraph/]!

[image: GitHub stars] [https://github.com/Accenture/AmpliGraph/stargazers/]

If you instead use AmpliGraph in an academic publication, cite as:

@misc{ampligraph,
      author= {Luca Costabello and
               Alberto Bernardi and
               Adrianna Janik and
               Aldan Creo and
               Sumit Pai and
               Chan Le Van and
               Rory McGrath and
               Nicholas McCarthy and
               Pedro Tabacof},
      title = {{AmpliGraph: a Library for Representation Learning on Knowledge Graphs}},
      month = mar,
      year  = 2019,
      doi   = {10.5281/zenodo.2595043},
      url   = {https://doi.org/10.5281/zenodo.2595043 }
 }
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Installation


Prerequisites


	Linux, macOS, Windows


	Python ≥ 3.8






Provision a Virtual Environment

To provision a virtual environment for installing AmpliGraph, any option can work; here we will give provide the
instruction for using venv and Conda.


venv

The first step is to create and activate the virtual environment.

python3.8 -m venv PATH/TO/NEW/VIRTUAL_ENVIRONMENT
source PATH/TO/NEW/VIRTUAL_ENVIRONMENT/bin/activate





Once this is done, we can proceed with the installation of TensorFlow 2:

pip install "tensorflow==2.9.0"





If you are installing Tensorflow on MacOS, instead of the following please use:

pip install "tensorflow-macos==2.9.0"





IMPORTANT: the installation of TensorFlow can be tricky on Mac OS with the Apple silicon chip. Though venv can
provide a smooth experience, we invite you to refer to the dedicated section
down below and consider using conda if some issues persist in alignment with the
Tensorflow Plugin page on Apple developer site [https://developer.apple.com/metal/tensorflow-plugin/].



Conda

The first step is to create and activate the virtual environment.

conda create --name ampligraph python=3.8
source activate ampligraph





Once this is done, we can proceed with the installation of TensorFlow 2, which can be done through pip or conda.

pip install "tensorflow==2.9.0"

or 

conda install "tensorflow==2.9.0"







Install TensorFlow 2 for Mac OS M1 chip

When installing TensorFlow 2 for Mac OS with Apple silicon chip we recommend to use a conda environment.

conda create --name ampligraph python=3.8
source activate ampligraph





After having created and activated the virtual environment, run the following to install Tensorflow.

conda install -c apple tensorflow-deps
pip install --user tensorflow-macos==2.9.0
pip install --user tensorflow-metal==0.6





In case of problems with the installation or for further details, refer to
Tensorflow Plugin page [https://developer.apple.com/metal/tensorflow-plugin/] on the official Apple developer website.




Install AmpliGraph

Once the installation of Tensorflow is complete, we can proceed with the installation of AmpliGraph.

To install the latest stable release from pip:

pip install ampligraph





To sanity check the installation, run the following:

>>> import ampligraph
>>> ampligraph.__version__
'2.1.0'





If instead you want the most recent development version, you can clone the repository from
GitHub [https://github.com/Accenture/AmpliGraph.git], install AmpliGraph from source and checkout the develop
branch. In this way, your local working copy will be on the latest commit on the develop branch.

git clone https://github.com/Accenture/AmpliGraph.git
cd AmpliGraph
git checkout develop
pip install -e .





Notice that the code snippet above installs the library in editable mode (-e).

To sanity check the installation run the following:

>>> import ampligraph
>>> ampligraph.__version__
'2.1-dev'







Support for TensorFlow 1.x

For TensorFlow 1.x-compatible AmpliGraph, use AmpliGraph 1.x [https://docs.ampligraph.org/en/1.4.0/], whose API are
available cloning the repository [https://github.com/Accenture/AmpliGraph.git] from GitHub and checking out the
ampligraph1/develop branch. However, notice that the support for this version has been discontinued.

Finally, if you want to use AmpliGraph 1.x APIs on top of Tensorflow 2, refer to the backward compatibility APIs
provided on Ampligraph compat [https://docs.ampligraph.org/en/2.0.0/ampligraph.latent_features.html#module-ampligraph.compat]
module.





            

          

      

      

    

  

    
      
          
            
  
Background

For a comprehensive theoretical and hands-on overview of KGE models and hands-on AmpliGraph, check out our tutorials:
COLING-22 KGE4NLP Tutorial (Slides + Recording + Colab Notebook) [https://kge4nlp-coling22.github.io/] and ECAI-20 Tutorial (Slides + Recording + Colab Notebook) [https://kge-tutorial-ecai2020.github.io/].

Knowledge graphs are graph-based knowledge bases whose facts are modeled as relationships between entities. Knowledge
graph research led to broad-scope graphs such as DBpedia [ABK+07], WordNet [], and YAGO
[SKW07]. Countless domain-specific knowledge graphs have also been published on the web, giving birth
to the so-called Web of Data [BHBL11].

Formally, a knowledge graph \(\mathcal{G}=\{ (sub,pred,obj)\} \subseteq \mathcal{E} \times \mathcal{R} \times  \mathcal{E}\)
is a set of \((sub,pred,obj)\) triples, each including a subject \(sub \in \mathcal{E}\),
a predicate \(pred \in \mathcal{R}\), and an object \(obj \in \mathcal{E}\).
\(\mathcal{E}\) and \(\mathcal{R}\) are the sets of all entities and relation types of \(\mathcal{G}\).

Knowledge graph embedding models are neural architectures that encode concepts from a knowledge graph (i.e. entities
\(\mathcal{E}\) and relation types \(\mathcal{R}\)) into low-dimensional, continuous vectors
\(\in \mathcal{R}^k\). Such textit{knowledge graph embeddings} have applications in knowledge graph completion,
entity resolution, and link-based clustering, just to cite a few [].
Knowledge graph embeddings are learned by training a neural architecture over a graph.
Although such architectures vary, the training phase always consists in minimizing a loss function \(\mathcal{L}\)
that includes a scoring function \(f_{m}(t)\), i.e. a model-specific function that assigns a score to a triple
\(t=(sub,pred,obj)\).

The goal of the optimization procedure is learning optimal embeddings, such that the scoring function is able to assign
high scores to positive statements and low scores to statements unlikely to be true. Existing models propose scoring
functions that combine the embeddings \(\mathbf{e}_{sub},\mathbf{e}_{pred}, \mathbf{e}_{obj} \in \mathcal{R}^k\) of
the subject, predicate, and object of triple \(t=(sub,pred,obj)\) using different intuitions:
TransE [BUGD+13] relies on distances,
DistMult [YYH+14] and
ComplEx [TWR+16] are bilinear-diagonal models,
RotatE [SDNT19] models relations as rotations in the
complex space, HolE [NRP+16] uses circular
correlation. While the above models can be interpreted as multilayer perceptrons, others such as ConvE include
convolutional layers [DMSR18].

As example, the scoring function of TransE computes a similarity between the embedding of the subject
\(\mathbf{e}_{sub}\) translated by the embedding of the predicate \(\mathbf{e}_{pred}\) and the embedding of
the object \(\mathbf{e}_{obj}\), using the \(L_1\) or \(L_2\) norm \(||\cdot||\):


\[f_{TransE}=-||\mathbf{e}_{sub} + \mathbf{e}_{pred} - \mathbf{e}_{obj}||_n\]

Such scoring function is then used on positive and negative triples \(t^+, t^-\) in the loss function.
This can be for example a pairwise margin-based loss, as shown in the equation below:


\[\mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}}\sum_{t^- \in \mathcal{N}}max(0, [\gamma + f_{m}(t^-;\Theta) - f_{m}(t^+;\Theta)])\]

where \(\Theta\) are the embeddings learned by the model, \(f_{m}\) is the model-specific scoring function,
\(\gamma \in \mathcal{R}\) is the margin and \(\mathcal{N}\) is a set of negative triples generated with a
corruption heuristic [BUGD+13].




            

          

      

      

    

  

    
      
          
            
  
API

AmpliGraph divides its APIs in the five main submodules listed below:



	Datasets

	Models

	Evaluation

	Discovery

	Utils

	Pre-Trained Models





The different submodules provide the user with support through all the operations needed when dealing with Knowledge
Graph Embedding models, from loading benchmark or user customised datasets, to saving and reloading a model after it has
been trained, validated and tested. Further, the APIs also support important downstream tasks and provide enough
flexibility to allow custom extensions from the most demanding users.




            

          

      

      

    

  

    
      
          
            
  
Datasets

Support for loading and managing datasets.


Loaders for Custom Knowledge Graphs

These are functions to load custom knowledge graphs from disk. They load the data from the specified files and store it
as a numpy array. These loaders are recommended when the datasets to load are small in size (approx 1M entities and
millions of triples), i.e., as long as they can be stored in memory. In case the dataset is too big to fit in memory,
use the GraphDataLoader class instead (see the
Advanced Topics section for more).







	load_from_csv(directory_path, file_name[, ...])

	Load a knowledge graph from a .csv file.



	load_from_ntriples(folder_name, file_name[, ...])

	Load a dataset of RDF ntriples.



	load_from_rdf(folder_name, file_name[, ...])

	Load an RDF file.








Benchmark Datasets Loaders


The following helper functions allow to load datasets used in graph representation learning literature as benchmarks.

Among the various datasets, some include additional content to the usual triples. WN11 and FB13 provide true and negative labels for the triples in the validation and tests sets. CODEX-M contains also ground truths negative triples for test and validation sets (more information about the dataset in []).

Finally, even though some of them are nowadays deprecated (WN18 and FB15k), they are kept in the library as these were the first benchmarks to be used in literature.









	load_fb15k_237([check_md5hash, ...])

	Load the FB15k-237 dataset (with option to load human labeled test subset).



	load_wn18rr([check_md5hash, clean_unseen, ...])

	Load the WN18RR dataset.



	load_yago3_10([check_md5hash, clean_unseen, ...])

	Load the YAGO3-10 dataset.



	load_wn11([check_md5hash, clean_unseen, ...])

	Load the WordNet11 (WN11) dataset.



	load_fb13([check_md5hash, clean_unseen, ...])

	Load the Freebase13 (FB13) dataset.



	load_codex([check_md5hash, clean_unseen, ...])

	Load the CoDEx-M dataset.



	load_fb15k([check_md5hash, add_reciprocal_rels])

	Load the FB15k dataset.



	load_wn18([check_md5hash, add_reciprocal_rels])

	Load the WN18 dataset.






Datasets Summary











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	FB15K-237

	272,115

	17,535

	20,466

	14,541

	237



	WN18RR

	86,835

	3,034

	3,134

	40,943

	11



	YAGO3-10

	1,079,040

	5,000

	5,000

	123,182

	37



	WN11

	110,361

	5,215

	21,035

	38,194

	11



	FB13

	316,232

	11,816

	47,464

	75,043

	13



	CODEX-M

	185,584

	10,310

	10,311

	17,050

	51



	FB15K

	483,142

	50,000

	59,071

	14,951

	1,345



	WN18

	141,442

	5,000

	5,000

	40,943

	18







Hint

It is recommended to set the AMPLIGRAPH_DATA_HOME environment variable:

export AMPLIGRAPH_DATA_HOME=/YOUR/PATH/TO/datasets






When attempting to load a dataset, the module will first check if AMPLIGRAPH_DATA_HOME is set. If so, it will search this location for the required dataset. If not, the dataset will be downloaded and placed in this directory.

If AMPLIGRAPH_DATA_HOME is not set, the datasets will be saved in the ~/ampligraph_datasets directory.






Warning


FB15K-237’s validation set contains 8 unseen entities over 9 triples. The test set has 29 unseen entities, distributed over 28 triples.

WN18RR’s validation set contains 198 unseen entities over 210 triples. The test set has 209 unseen entities, distributed over 210 triples.







Benchmark Datasets With Numeric Values on Edges Loader

These helper functions load benchmark datasets with numeric values on edges (the figure below shows a toy example).
Numeric values associated to edges of a knowledge graph have been used to represent uncertainty, edge importance, and
even out-of-band knowledge in a growing number of scenarios, ranging from genetic data to social networks.

[image: _images/kg_eg.png]

Hint

To process a knowledge graphs with numeric values associated to edges, enable the
FocusE layer [PC21] when training a knowledge graph embedding model.



The functions will automatically download the datasets if they are not present in ~/ampligraph_datasets or
at the location set in the AMPLIGRAPH_DATA_HOME.







	load_onet20k([check_md5hash, clean_unseen, ...])

	Load the O*NET20K dataset.



	load_ppi5k([check_md5hash, clean_unseen, ...])

	Load the PPI5K dataset.



	load_nl27k([check_md5hash, clean_unseen, ...])

	Load the NL27K dataset.



	load_cn15k([check_md5hash, clean_unseen, ...])

	Load the CN15K dataset.






Datasets Summary











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	O*NET20K

	461,932

	138

	2,000

	20,643

	19



	PPI5K

	230,929

	19,017

	21,720

	4,999

	7



	NL27K

	149,100

	12,274

	14,026

	27,221

	405



	CN15K

	199,417

	16,829

	19,224

	15,000

	36










            

          

      

      

    

  

    
      
          
            
  
load_from_csv


	
ampligraph.datasets.load_from_csv(directory_path, file_name, sep='\t', header=None, add_reciprocal_rels=False)

	Load a knowledge graph from a .csv file.

Loads a knowledge graph serialized in a .csv file filtering duplicated statements. In the .csv file, each line
has to represent a triple, and entities and relations are separated by sep.
For instance, if sep="\t", the .csv file look like:

subj1    relationX   obj1
subj1    relationY   obj2
subj3    relationZ   obj2
subj4    relationY   obj2
           ...






Hint

To split a generic knowledge graphs into training, validation, and test sets do not use the above
function, but rather train_test_split_no_unseen(): this will return
validation and test sets not including triples with entities not present in the training set.




	Parameters

	
	directory_path (str) – Folder where the input file is stored.


	file_name (str) – File name.


	sep (str) – The subject-predicate-object separator (default: "\t").


	header (int or None) – The row of the header of the csv file. Same as pandas.read_csv header param.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	triples – The actual triples of the file.



	Return type

	ndarray, shape (n, 3)





Example

>>> PATH_TO_FOLDER = 'your/path/to/folder/'
>>> from ampligraph.datasets import load_from_csv
>>> X = load_from_csv(PATH_TO_FOLDER, 'dataset.csv', sep=',')
>>> X[:3]
array([['a', 'y', 'b'],
       ['b', 'y', 'a'],
       ['a', 'y', 'c']],
      dtype='<U1')












            

          

      

      

    

  

    
      
          
            
  
load_from_ntriples


	
ampligraph.datasets.load_from_ntriples(folder_name, file_name, data_home=None, add_reciprocal_rels=False)

	Load a dataset of RDF ntriples.

Loads an RDF knowledge graph serialized as ntriples, without building an RDF graph in memory.
This function should be preferred over load_from_rdf(), since it does not load the graph into an rdflib
model (and it is therefore faster by order of magnitudes).
Nevertheless, it requires a ntriples [https://www.w3.org/TR/n-triples/.] serialization as in the example below:

_:alice <http://xmlns.com/foaf/0.1/knows> _:bob .
_:bob <http://xmlns.com/foaf/0.1/knows> _:alice .






Hint

To split a generic knowledge graphs into training, validation, and test sets do not use the above
function, but rather train_test_split_no_unseen(): this will return
validation and test sets not including triples with entities not present in the training set.




	Parameters

	
	folder_name (str) – Base folder where the file is stored.


	file_name (str) – File name.


	data_home (str) – The path to the folder that contains the datasets.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	triples – The actual triples of the file.



	Return type

	ndarray, shape (n, 3)












            

          

      

      

    

  

    
      
          
            
  
load_from_rdf


	
ampligraph.datasets.load_from_rdf(folder_name, file_name, rdf_format='nt', data_home=None, add_reciprocal_rels=False)

	Load an RDF file.

Loads an RDF knowledge graph using rdflib [https://rdflib.readthedocs.io/] APIs.
Multiple RDF serialization formats are supported (nt, ttl, rdf/xml, etc).
The entire graph will be loaded in memory, and converted into an rdflib Graph object.


Warning

Large RDF graphs should be serialized to ntriples beforehand and loaded with load_from_ntriples() instead.
This function, indeed, is faster by orders of magnitude.




Hint

To split a generic knowledge graphs into training, validation, and test sets do not use the above
function, but rather train_test_split_no_unseen(): this will return
validation and test sets not including triples with entities not present in the training set.




	Parameters

	
	folder_name (str) – Base folder where the file is stored.


	file_name (str) – File name.


	rdf_format (str) – The RDF serialization format (nt, ttl, rdf/xml - see rdflib documentation).


	data_home (str) – The path to the folder that contains the datasets.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	triples – The actual triples of the file.



	Return type

	ndarray, shape (n, 3)












            

          

      

      

    

  

    
      
          
            
  
load_fb15k_237


	
ampligraph.datasets.load_fb15k_237(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False, return_mapper=False)

	Load the FB15k-237 dataset (with option to load human labeled test subset).

FB15k-237 is a reduced version of FB15K. It was first proposed by [].


Warning

FB15K-237’s validation set contains 8 unseen entities over 9 triples. The test set has 29 unseen entities,
distributed over 28 triples.



The FB15k-237 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

The dataset is divided in three splits:


	train: 272,115 triples


	valid: 17,535 triples


	test: 20,466 triples




It also contains a subset of the test set with human-readable labels, available here:


	test-human


	test-human-ids















	Dataset

	Train

	Valid

	Test

	Test-Human

	Entities

	Relations





	FB15K-237

	272,115

	17,535

	20,466

	273

	14,541

	237







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).


	return_mapper (bool) – Whether to return human-readable labels in a form of dictionary in X["mapper"] field (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test, ‘test-human’:test_human, ‘test-human-ids’: test_human_ids}.
Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_fb15k_237
>>> X = load_fb15k_237()
>>> X["train"][2]
array(['/m/07s9rl0', '/media_common/netflix_genre/titles', '/m/0170z3'],
  dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_wn18rr


	
ampligraph.datasets.load_wn18rr(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False)

	Load the WN18RR dataset.

The dataset is described in [DMSR18].



Warning

WN18RR’s validation set contains 198 unseen entities over 210 triples. The test set
has 209 unseen entities, distributed over 210 triples.






The WN18RR dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 86,835 triples


	valid: 3,034 triples


	test: 3,134 triples














	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	WN18RR

	86,835

	3,034

	3,134

	40,943

	11







	Parameters

	
	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	check_md5hash (bool) – If True check the md5hash of the datset files (default: False).


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_wn18rr
>>> X = load_wn18rr()
>>> X["valid"][0]
array(['02174461', '_hypernym', '02176268'], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_yago3_10


	
ampligraph.datasets.load_yago3_10(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False)

	Load the YAGO3-10 dataset.

The dataset is a split of YAGO3 [],
and has been first presented in [DMSR18].

The YAGO3-10 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 1,079,040 triples


	valid: 5,000 triples


	test: 5,000 triples














	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	YAGO3-10

	1,079,040

	5,000

	5,000

	123,182

	37







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default:False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_yago3_10
>>> X = load_yago3_10()
>>> X["valid"][0]
array(['Mikheil_Khutsishvili', 'playsFor', 'FC_Merani_Tbilisi'], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_wn11


	
ampligraph.datasets.load_wn11(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False)

	Load the WordNet11 (WN11) dataset.

WordNet was originally proposed in WordNet: a lexical database for English [].


Note

WN11 also provide true and negative labels for the triples in the validation and tests sets.
The positive base rate is close to 50%.



WN11 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 110361 triples


	valid: 5215 triples


	test: 21035 triples




Both the validation and test splits are associated with labels (binary ndarrays),
with True for positive statements and False for  negatives:


	valid_labels


	test_labels
















	Dataset

	Train

	Valid Pos

	Valid Neg

	Test Pos

	Test Neg

	Entities

	Relations





	WN11

	110361

	2606

	2609

	10493

	10542

	38588

	11







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘valid_labels’: valid_labels,
‘test’: test, ‘test_labels’: test_labels}.
Each split containing a dataset is a ndarray of shape (n, 3).
The labels are a ndarray of shape (n).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_wn11
>>> X = load_wn11()
>>> X["valid"][0]
array(['__genus_xylomelum_1', '_type_of', '__dicot_genus_1'], dtype=object)
>>> X["valid_labels"][0:3]
array([ True, False,  True])












            

          

      

      

    

  

    
      
          
            
  
load_fb13


	
ampligraph.datasets.load_fb13(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False)

	Load the Freebase13 (FB13) dataset.

FB13 is a subset of Freebase []
and was initially presented in
Reasoning With Neural Tensor Networks for Knowledge Base Completion [].


Note

FB13 also provide true and negative labels for the triples in the validation and tests sets.
The positive base rate is close to 50%.



FB13 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 316232 triples


	valid: 11816 triples


	test: 47464 triples




Both the validation and test splits are associated with labels (binary ndarrays),
with True for positive statements and False for  negatives:


	valid_labels


	test_labels
















	Dataset

	Train

	Valid Pos

	Valid Neg

	Test Pos

	Test Neg

	Entities

	Relations





	FB13

	316232

	5908

	5908

	23733

	23731

	75043

	13







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘valid_labels’: valid_labels,
‘test’: test, ‘test_labels’: test_labels}.
Each split containing a dataset is a ndarray of shape (n, 3).
The labels are ndarray of shape (n).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_fb13
>>> X = load_fb13()
>>> X["valid"][0]
array(['cornelie_van_zanten', 'gender', 'female'], dtype=object)
>>> X["valid_labels"][0:3]
array([True, False, True], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_codex


	
ampligraph.datasets.load_codex(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False, return_mapper=False)

	Load the CoDEx-M dataset.

The dataset is described in [].


Note

CODEX-M contains also ground truths negative triples for test and validation sets. For more information, see
the above reference to the original paper.



The CodDEx dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 185,584 triples


	valid: 10,310 triples


	test: 10,310 triples




Both the validation and test splits are associated with labels (binary ndarrays),
with True for positive statements and False for  negatives:


	valid_labels


	test_labels
















	Dataset

	Train

	Valid

	Valid-negatives

	Test

	Test-negatives

	Entities

	Relations





	CoDEx-M

	185,584

	10,310

	10,310

	10311

	10311

	17,050

	51







	Parameters

	
	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	check_md5hash (bool) – If True, check the md5hash of the datset files (default: False).


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).


	return_mapper (bool) – Whether to return human-readable labels in a form of dictionary in X["mapper"] field (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘valid_negatives’: valid_negatives’, ‘test’: test, ‘test_negatives’: test_negatives}.
Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_codex
>>> X = load_codex()
>>> X["valid"][0]
array(['Q60684', 'P106', 'Q4964182'], dtype=object)
>>> X = load_codex(return_mapper=True)
>>> [X['mapper'][elem]['label'] for elem in X['valid'][0]]
['Novalis', 'occupation', 'philosopher']












            

          

      

      

    

  

    
      
          
            
  
load_fb15k


	
ampligraph.datasets.load_fb15k(check_md5hash=False, add_reciprocal_rels=False)

	Load the FB15k dataset.

FB15k is a split of Freebase, first proposed by [BUGD+13].


Warning

The dataset includes a large number of inverse relations that spilled to the test set, and its use in
experiments has been deprecated. Use FB15k-237 instead.



The FB15k dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

The dataset is divided in three splits:


	train: 483,142 triples


	valid: 50,000 triples


	test: 59,071 triples














	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	FB15K

	483,142

	50,000

	59,071

	14,951

	1,345







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_fb15k
>>> X = load_fb15k()
>>> X['test'][:3]
array([['/m/01qscs',
        '/award/award_nominee/award_nominations./award/award_nomination/award',
        '/m/02x8n1n'],
       ['/m/040db', '/base/activism/activist/area_of_activism', '/m/0148d'],
       ['/m/08966',
        '/travel/travel_destination/climate./travel/travel_destination_monthly_climate/month',
        '/m/05lf_']], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_wn18


	
ampligraph.datasets.load_wn18(check_md5hash=False, add_reciprocal_rels=False)

	Load the WN18 dataset.

WN18 is a subset of Wordnet. It was first presented by [BUGD+13].


Warning

The dataset includes a large number of inverse relations that spilled to the test set, and its use in
experiments has been deprecated. Use WN18RR instead.



The WN18 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

The dataset is divided in three splits:


	train: 141,442 triples


	valid 5,000 triples


	test 5,000 triples














	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	WN18

	141,442

	5,000

	5,000

	40,943

	18







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_wn18
>>> X = load_wn18()
>>> X['test'][:3]
array([['06845599', '_member_of_domain_usage', '03754979'],
       ['00789448', '_verb_group', '01062739'],
       ['10217831', '_hyponym', '10682169']], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_onet20k


	
ampligraph.datasets.load_onet20k(check_md5hash=False, clean_unseen=True, split_test_into_top_bottom=True, split_threshold=0.1)

	Load the O*NET20K dataset.

O*NET20K was originally proposed in [PC21].
It is a subset  of O*NET [https://www.onetonline.org/], a dataset that includes job descriptions, skills
and labeled, binary relations between such concepts. Each triple is labeled with a numeric value that
indicates the importance of that link.

O*NET20K dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 461,932 triples


	valid: 850 triples


	test: 2,000 triples




Each triple in these splits is associated to a numeric value which represents the importance/relevance of
the link.











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	ONET*20K

	461,932

	850

	2,000

	20,643

	19







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training
set.


	split_test_into_top_bottom (bool) – Splits the test set by numeric values and returns test_top_split and test_bottom_split by splitting based
on sorted numeric values and returning top and bottom k% triples, where k is specified by split_threshold
argument.


	split_threshold (float) – Specifies the top and bottom percentage of triples to return.






	Returns

	splits – The dataset splits: {‘train’: train,
‘valid’: valid,
‘test’: test,
‘test_topk’: test_topk,
‘test_bottomk’: test_bottomk,
‘train_numeric_values’: train_numeric_values,
‘valid_numeric_values’:valid_numeric_values,
‘test_numeric_values’: test_numeric_values,
‘test_topk_numeric_values’: test_topk_numeric_values,
‘test_bottomk_numeric_values’: test_bottomk_numeric_values}.
Each *_numeric_values split contains numeric values associated to the corresponding dataset split and
is a ndarray of shape (n).
Each dataset split is a ndarray of shape (n,3).
The *_topk and *_bottomk splits are only returned when split_test_into_top_bottom=True and contain
the triples ordered by highest/lowest numeric edge value associated. These are typically used at evaluation time
aiming at observing a model that assigns the highest rank possible to the _topk and the lowest possible to
the _bottomk.



	Return type

	dict





Example

>>> from ampligraph.datasets import load_onet20k
>>> X = load_onet20k()
>>> X["train"][0]
['Job_27-1021.00' 'has_ability_LV' '1.A.1.b.2']
>>> X['train_numeric_values'][0]
[0.6257143]












            

          

      

      

    

  

    
      
          
            
  
load_ppi5k


	
ampligraph.datasets.load_ppi5k(check_md5hash=False, clean_unseen=True, split_test_into_top_bottom=True, split_threshold=0.1)

	Load the PPI5K dataset.

Originally proposed in [], PPI5K is a subset of the protein-protein
interactions (PPI) knowledge graph []. Numeric values represent the confidence of the link
based on existing scientific literature evidence.

PPI5K is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

It is divided into three splits:


	train: 230,929 triples


	valid: 19,017 triples


	test: 21,720 triples




Each triple in these splits is associated to a numeric value which models additional information on the
fact (importance, relevance of the link).











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	PPI5K

	230929

	19017

	21720

	4999

	7







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training
set.


	split_test_into_top_bottom (bool) – When set to True, the function also returns subsets of the test set that includes only the top-k or
bottom-k numeric-enriched triples. Splits test_topk, test_bottomk and their
numeric values. Such splits are generated by sorting Splits the test set by numeric values and returns
test_top_split and test_bottom_split by splitting based on sorted numeric values and returning top
and bottom k% triples, where k is specified by the split_threshold argument.


	split_threshold (float) – Specifies the top and bottom percentage of triples to return.






	Returns

	splits – The dataset splits: {‘train’: train,
‘valid’: valid,
‘test’: test,
‘test_topk’: test_topk,
‘test_bottomk’: test_bottomk,
‘train_numeric_values’: train_numeric_values,
‘valid_numeric_values’:valid_numeric_values,
‘test_numeric_values’: test_numeric_values,
‘test_topk_numeric_values’: test_topk_numeric_values,
‘test_bottomk_numeric_values’: test_bottomk_numeric_values}.
Each *_numeric_values split contains numeric values associated to the corresponding dataset split and
is a ndarray of shape (n).
Each dataset split is a ndarray of shape (n,3).
The *_topk and *_bottomk splits are only returned when split_test_into_top_bottom=True and contain
the triples ordered by highest/lowest numeric edge value associated. These are typically used at evaluation time
aiming at observing a model that assigns the highest rank possible to the _topk and the lowest possible to
the _bottomk.



	Return type

	dict





Example

>>> from ampligraph.datasets import load_ppi5k
>>> X = load_ppi5k()
>>> X["train"][0]
['4001' '5' '4176']
>>> X['train_numeric_values'][0]
[0.329]












            

          

      

      

    

  

    
      
          
            
  
load_nl27k


	
ampligraph.datasets.load_nl27k(check_md5hash=False, clean_unseen=True, split_test_into_top_bottom=True, split_threshold=0.1)

	Load the NL27K dataset.

NL27K was originally proposed in []. It is a subset of the Never Ending Language
Learning (NELL) dataset [], which collects data from web pages.
Numeric values on triples represent link uncertainty.

NL27K is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

It is divided into three splits:


	train: 149,100 triples


	valid: 12,274 triples


	test: 14,026 triples




Each triple in these splits is associated to a numeric value which represents the importance/relevance of
the link.











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	NL27K

	149,100

	12,274

	14,026

	27,221

	405







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training
set.


	split_test_into_top_bottom (bool) – Splits the test set by numeric values and returns test_top_split and test_bottom_split by splitting based
on sorted numeric values and returning top and bottom k% triples, where k is specified by split_threshold
argument.


	split_threshold (float) – Specifies the top and bottom percentage of triples to return.






	Returns

	splits – The dataset splits: {‘train’: train,
‘valid’: valid,
‘test’: test,
‘test_topk’: test_topk,
‘test_bottomk’: test_bottomk,
‘train_numeric_values’: train_numeric_values,
‘valid_numeric_values’:valid_numeric_values,
‘test_numeric_values’: test_numeric_values,
‘test_topk_numeric_values’: test_topk_numeric_values,
‘test_bottomk_numeric_values’: test_bottomk_numeric_values}.
Each *_numeric_values split contains numeric values associated to the corresponding dataset split and
is a ndarray of shape (n).
Each dataset split is a ndarray of shape (n,3).
The *_topk and *_bottomk splits are only returned when split_test_into_top_bottom=True and contain
the triples ordered by highest/lowest numeric edge value associated. These are typically used at evaluation time
aiming at observing a model that assigns the highest rank possible to the _topk and the lowest possible to
the _bottomk.



	Return type

	dict





Example

>>> from ampligraph.datasets import load_nl27k
>>> X = load_nl27k()
>>> X["train"][0]
['concept:company:business_review' 'concept:competeswith' 'concept:company:miami_herald001']
>>> X['train_numeric_values'][0]
[0.859375]












            

          

      

      

    

  

    
      
          
            
  
load_cn15k


	
ampligraph.datasets.load_cn15k(check_md5hash=False, clean_unseen=True, split_test_into_top_bottom=True, split_threshold=0.1)

	Load the CN15K dataset.

CN15K was originally proposed in [], it is a subset of ConceptNet [],
a common-sense knowledge graph built to represent general human knowledge.
Numeric values on triples represent uncertainty.

CN15k dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

It is divided into three splits:


	train: 199,417 triples


	valid: 16,829 triples


	test: 19,224 triples




Each triple in these splits is associated to a numeric value which represents the importance/relevance of
the link.











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	CN15K

	199,417

	16,829

	19,224

	15,000

	36







	Parameters

	
	check_md5hash (bool) – If True, check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training
set.


	split_test_into_top_bottom (bool) – Splits the test set by numeric values and returns test_top_split and test_bottom_split by splitting based
on sorted numeric values and returning top and bottom k% triples, where k is specified by split_threshold
argument.


	split_threshold (float) – Specifies the top and bottom percentage of triples to return.






	Returns

	splits – The dataset splits: {‘train’: train,
‘valid’: valid,
‘test’: test,
‘test_topk’: test_topk,
‘test_bottomk’: test_bottomk,
‘train_numeric_values’: train_numeric_values,
‘valid_numeric_values’:valid_numeric_values,
‘test_numeric_values’: test_numeric_values,
‘test_topk_numeric_values’: test_topk_numeric_values,
‘test_bottomk_numeric_values’: test_bottomk_numeric_values}.
Each *_numeric_values split contains numeric values associated to the corresponding dataset split and
is a ndarray of shape (n).
Each dataset split is a ndarray of shape (n,3).
The *_topk and *_bottomk splits are only returned when split_test_into_top_bottom=True and contain
the triples ordered by highest/lowest numeric edge value associated. These are typically used at evaluation time
aiming at observing a model that assigns the highest rank possible to the _topk and the lowest possible to
the _bottomk.



	Return type

	dict





Example

>>> from ampligraph.datasets import load_cn15k
>>> X = load_cn15k()
>>> X["train"][0]
['260' '2' '13895']
>>> X['train_numeric_values'][0]
[0.8927088]












            

          

      

      

    

  

    
      
          
            
  
Models

This module includes neural graph embedding models and support functions.

Knowledge graph embedding models are neural architectures that encode concepts
from a knowledge graph (i.e., entities \(\mathcal{E}\) and relation types
\(\mathcal{R}\)) into low-dimensional, continuous vectors \(\in
\mathcal{R}^k\). Such knowledge graph embeddings have applications in
knowledge graph completion, entity resolution, and link-based clustering,
just to cite a few [].

Knowledge Graph Embedding models (KGE) are neural architectures that encode concepts from a knowledge graph
(i.e., entities \(\mathcal{E}\) and relation types \(\mathcal{R}\)) into low-dimensional,
continuous vectors living in \(\mathbb{R}^k\), where \(k\) can be specified by the user.

Knowledge Graph Embeddings have applications in knowledge graph completion, entity resolution, and link-based
clustering, just to cite a few [].

In Ampligraph 2, KGE models are implemented in the ScoringBasedEmbeddingModel
class, that inherits from Keras Model [https://www.tensorflow.org/api_docs/python/tf/keras/Model/]:







	ScoringBasedEmbeddingModel(*args, **kwargs)

	Class for handling KGE models which follows the ranking based protocol.






The advantage of inheriting from Keras models are many. We can use most of Keras initializers (HeNormal, GlorotNormal…),
regularizers (\(L^1\), \(L^2\)…), optimizers (Adam, AdaGrad…) and callbacks (early stopping, model
checkpointing…), all without having to reimplement them. From a user perspective, people already acquainted to Keras
can seemlessly work with AmpliGraph due to the similarity of the APIs.

We also provide backward compatibility with the APIs of Ampligraph 1, by wrapping the older APIs around the newer ones.


Anatomy of a Model

Knowledge Graph Embeddings are learned by training a neural architecture over a graph. Although such architecture can be
of many different kinds, the training phase always consists in minimizing a loss function
\(\mathcal{L}\) that optimizes the scores output by a scoring function \(f_{m}(t)\),
i.e., a model-specific function that assigns a score to a triple \(t=(sub,pred,obj)\).


	Embedding Generation Layer


	Negatives Generation Layer


	Scoring Layer


	Loss function


	Optimizer


	Regularizer


	Initializer




The first three elements are included in the ScoringBasedEmbeddingModel class and they inherit from
Keras Layer [https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer/].

Further, for the scoring layer and the loss function, AmpliGraph features abstract classes that can be extended to
design new models:







	AbstractScoringLayer(*args, **kwargs)

	Abstract class for scoring layer.



	Loss([hyperparam_dict, verbose])

	Abstract class for the loss function.







Embedding Generation Layer

The embedding generation layer generates the embeddings of the concepts present in the triples. It may be as simple as
a shallow encoding (i.e., a lookup of the embedding of an input node or edge type), or it can be as complex as a
neural network, which tokenizes nodes and generates embeddings for nodes using a neural encoder (e.g., NodePiece).
Currently, AmpliGraph implements the shallow look-up strategy but will be expanded soon to include other efficient approaches.







	EmbeddingLookupLayer(*args, **kwargs)

	








Negatives Generation Layer

This layer is responsible for generation of synthetic negatives. The strategies to generate negatives can be multiple.
In our case, we assume a local close world assumption, and implement a simple negative generation strategy,
where we randomly corrupt either the subject, the object or both the subject and the object of a triple, to generate a
synthetic negative. Further, we allow filtering the true positives out of the generated negatives.







	CorruptionGenerationLayerTrain(*args, **kwargs)

	Generates corruptions during training.








Scoring Layer

The scoring layer applies a scoring function \(f\) to a triple \(t=(s,p,o)\). This function combines the embeddings
\(\mathbf{e}_{s},\mathbf{r}_{p}, \mathbf{e}_{o} \in \mathbb{R}^k\) (or \(\in \mathbb{C}^k\)) of the subject, predicate,
and object of \(t\) into a score representing the plausibility of the triple.







	TransE(*args, **kwargs)

	Translating Embeddings (TransE) scoring layer.



	DistMult(*args, **kwargs)

	DistMult scoring layer.



	ComplEx(*args, **kwargs)

	Complex Embeddings (ComplEx) scoring layer.



	RotatE(*args, **kwargs)

	Rotate Embeddings (RotatE) scoring layer.



	HolE(*args, **kwargs)

	Holographic Embeddings (HolE) scoring layer.






Different scoring functions are designed according to different intuitions:


	TransE [BUGD+13] relies on distances. The scoring function computes a similarity between




the embedding of the subject translated by the embedding of the predicate  and the embedding of the object, using the
\(L^1\) or \(L^2\) norm \(||\cdot||\):



\[f_{TransE}=-||\mathbf{e}_{s} + \mathbf{r}_{p} - \mathbf{e}_{o}||\]





	
	DistMult [YYH+14] uses the trilinear dot product:
	
\[f_{DistMult}=\langle \mathbf{r}_p, \mathbf{e}_s, \mathbf{e}_o \rangle\]







	
	ComplEx [TWR+16] extends DistMult with the Hermitian dot product:
	
\[f_{ComplEx}=Re(\langle \mathbf{r}_p, \mathbf{e}_s, \overline{\mathbf{e}_o}  \rangle)\]







	
	RotatE [SDNT19] models relations as rotations in the Complex space:
	
\[f_{RotatE}=||\mathbf{e}_{s} \circ \mathbf{r}_{p} - \mathbf{e}_{o}||\]







	
	HolE [NRP+16] uses circular correlation (denoted by \(\otimes\)):
	
\[f_{HolE}=\mathbf{w}_r \cdot (\mathbf{e}_s \otimes \mathbf{e}_o) = \frac{1}{k}\mathcal{F}(\mathbf{w}_r)\cdot( \overline{\mathcal{F}(\mathbf{e}_s)} \odot \mathcal{F}(\mathbf{e}_o))\]











Loss Functions

AmpliGraph includes a number of loss functions commonly used in literature.
Each function can be used with any of the implemented models. Loss functions are passed to models at the compilation
stage as the loss parameter to the compile() method. Below are the loss functions available in AmpliGraph.







	PairwiseLoss([loss_params, verbose])

	Pairwise, max-margin loss.



	AbsoluteMarginLoss([loss_params, verbose])

	Absolute margin, max-margin loss.



	SelfAdversarialLoss([loss_params, verbose])

	Self Adversarial Sampling loss.



	NLLLoss([loss_params, verbose])

	Negative Log-Likelihood loss.



	NLLMulticlass([loss_params, verbose])

	Multiclass Negative Log-Likelihood loss.








Regularizers

AmpliGraph includes a number of regularizers that can be used with the loss function.
Regularizers can be passed to the entity_relation_regularizer parameter of compile() method.

LP_regularizer() supports \(L^1, L^2\) and \(L^3\) regularization.
Ampligraph also supports the regularizers [https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/]
available in TensorFlow.







	LP_regularizer(trainable_param[, ...])

	Norm \(L^{p}\) regularizer.








Initializers

To initialize embeddings, AmpliGraph supports all the initializers [https://www.tensorflow.org/api_docs/python/tf/keras/initializers/]
available in TensorFlow.
Initializers can be passed to the entity_relation_initializer parameter of compile() method.



Optimizers

The goal of the optimization procedure is learning optimal embeddings, such that the scoring function is able to
assign high scores to positive statements and low scores to statements unlikely to be true.

We support optimizers [https://www.tensorflow.org/api_docs/python/tf/keras/optimizers] available in TensorFlow.
They can be specified as the optimizer argument of the compile() method.




Training

The training procedure follows that of Keras models:


	The model is initialised as an instance of the ScoringBasedEmbeddingModel class. During its initialisation,
we can specify, among the other hyper-parameters of the model: the size of the embedding (argument k); the scoring
function applied by the model (argument scoring_type); the number of synthetic negatives generated for each triple
in the training set (argument eta).


	The model needs to be compiled through the compile() method. At this stage we define, among the others,
the optimizer and the objective functions. These are passed as arguments to the aforementioned method.


	The model is fitted to the training data using the fit() method. Next to the usual parameters that can be
specified at this stage, AmpliGraph allows to also specify:



	A validation_filter that contains the true positives to be removed from the synthetically corrupted triples used during validation.


	A focusE option, which enables the FocusE layer [PC21]: this allows to handle datasets with
a numeric value associated to the edges, which can signify importance, uncertainty, significance, confidence…


	A partitioning_k argument that specifies whether the data needs to be partitioned in order to make training
with datasets not fitting in memory more efficient.







For more details and options, check the fit() method.







Calibration

Another important feature implemented in AmpliGraph is calibration [TC20].
Such a method leverages a heuristics that significantly enhance the performance of the models. Further, it bounds the
score of the model in the range \([0,1]\), making the score of the prediction more meaningful and interpretable.







	CalibrationLayer(*args, **kwargs)

	Layer to calibrate the model outputs.








Numeric Values on Edges

Numeric values associated to edges of a knowledge graph have been used to represent uncertainty, edge importance, and
even out-of-band knowledge in a growing number of scenarios, ranging from genetic data to social networks.
Nevertheless, traditional KGE models (TransE, DistMult, ComplEx, RotatE, HolE) are not designed to capture such
information, to the detriment of predictive power.

AmpliGraph includes FocusE [PC21], a method to inject numeric edge attributes into the scoring
layer of a traditional KGE architecture, thus accounting for the precious information embedded in the edge weights.
In order to add the FocusE layer, set focusE=True and specify the hyperparameters dictionary focusE_params in
the fit() method.

It is possible to load some benchmark knowledge graphs with numeric-enriched edges through Ampligraph
dataset loaders.



Saving/Restoring Models

The weights of a trained model can be saved and restored from disk. This is useful to avoid re-training a model.
In order to save and restore the weights of a model, we can use the save_weights()
and load_weights() methods. When the model is saved and loaded with these methods,
however, it is not possible to restart the training from where it stopped. AmpliGraph gives the possibility of doing
that using save_model() and restore_model() available in
the utils module.



Compatibility Ampligraph 1.x

Provides backward compatibility to AmpliGraph 1 APIs.

For those familiar with versions of AmpliGraph 1.x, we have created backward compatible APIs under the
ampligraph.compat module.

These APIs act as wrappers around the newer Keras style APIs and provide seamless experience for our existing user base.

The first group of APIs defines the classes that wraps around the ScoringBasedEmbeddingModel with a specific scoring function.







	TransE([k, eta, epochs, batches_count, ...])

	Class wrapping around the ScoringBasedEmbeddingModel with the TransE scoring function.



	ComplEx([k, eta, epochs, batches_count, ...])

	Class wrapping around the ScoringBasedEmbeddingModel with the ComplEx scoring function.



	DistMult([k, eta, epochs, batches_count, ...])

	Class wrapping around the ScoringBasedEmbeddingModel with the DistMult scoring function.



	HolE([k, eta, epochs, batches_count, seed, ...])

	Class wrapping around the ScoringBasedEmbeddingModel with the HolE scoring function.






When it comes to evaluation, on the other hand, the following API wraps around the new evaluation process of Ampligraph 2.







	evaluate_performance(X, model[, ...])

	Evaluate the performance of an embedding model.










            

          

      

      

    

  

    
      
          
            
  
Evaluation

The module includes performance metrics for neural graph embeddings models,
along with model selection routines, negatives generation, and an
implementation of the learning-to-rank-based evaluation protocol
used in literature.

After the training is complete, the model is ready to perform predictions and to be evaluated on unseen data. Given a
triple, the model can score it and quantify its plausibility. Importantly, the entities and relations of new triples
must have been seen during training, otherwise no embedding for them is available. Future extensions of the code base
will introduce inductive methods as well.

The standard evaluation of a test triples is achieved by comparing the score assigned by the model to that triple with
those assigned to the same triple where we corrupted either the object or the subject. From this comparison we
extract some metrics. By aggregating the metrics obtained for all triples in the test set, we finally obtain a “thorough”
(depending on the quality of the test set and of the corruptions) evaluation of the model.


Metrics

The available metrics implemented in AmpliGraph to rank a triple against its corruptions are listed in the table below.







	rank_score(y_true, y_pred[, pos_lab])

	Computes the rank of a triple.



	mr_score(ranks)

	Mean Rank (MR).



	mrr_score(ranks)

	Mean Reciprocal Rank (MRR).



	hits_at_n_score(ranks, n)

	Hits@N.








Model Selection

AmpliGraph implements a model selection routine for KGE models via either a grid search or a random search.
Random search is typically more efficient, but grid search, on the other hand, can provide a more controlled selection framework.







	select_best_model_ranking(model_class, ...)

	Model selection routine for embedding models via either grid search or random search.








Helper Functions

Utilities and support functions for evaluation procedures.







	train_test_split_no_unseen(X[, test_size, ...])

	Split into train and test sets.



	filter_unseen_entities(X, model[, verbose])

	Filter unseen entities in the test set.










            

          

      

      

    

  

    
      
          
            
  
Discovery

This module includes a number of functions to perform knowledge discovery
in graph embeddings.

Functions provided include discover_facts which will generate candidate
statements using one of several defined strategies and return triples that
perform well when evaluated against corruptions, find_clusters which
will perform link-based cluster analysis on a knowledge graph,
find_duplicates which will find duplicate entities
in a graph based on their embeddings, and query_topn which when given
two elements of a triple will return the top_n results of all possible
completions ordered by predicted score.







	discover_facts(X, model[, top_n, strategy, ...])

	Discover new facts from an existing knowledge graph.



	find_clusters(X, model[, ...])

	Perform link-based cluster analysis on a knowledge graph.



	find_duplicates(X, model[, mode, metric, ...])

	Find duplicate entities, relations or triples in a graph based on their embeddings.



	query_topn(model[, top_n, head, relation, ...])

	Queries the model with two elements of a triple and returns the top_n results of all possible completions ordered by score predicted by the model.









            

          

      

      

    

  

    
      
          
            
  
discover_facts


	
ampligraph.discovery.discover_facts(X, model, top_n=10, strategy='random_uniform', max_candidates=100, target_rel=None, seed=0)

	Discover new facts from an existing knowledge graph.

You should use this function when you already have a model trained on a knowledge graph
and you want to discover potentially true statements in that knowledge graph.

The general procedure of this function is to generate a set of candidate statements
\(C\) according to some sampling strategy strategy, then rank them against a set
of corruptions using the ampligraph.latent_features.ScoringBasedEmbeddingModel.evaluate()
method.
Candidates that appear in the top_n ranked statements of this procedure are returned
as likely true statements.

The majority of the strategies are implemented with the same underlying principle of
searching for candidate statements:


	from among the less frequent entities (‘entity_frequency’),


	less connected entities (‘graph_degree’, ‘cluster_coefficient’),


	
less frequent local graph structures (‘cluster_triangles’, ‘cluster_squares’),
on the assumption that densely connected entities are less likely to have missing
true statements.





	
The remaining strategies (‘random_uniform’, ‘exhaustive’) generate candidate
statements by a random sampling of entities and relations or exhaustively, respectively.








Warning

Due to the significant amount of computation required to evaluate all triples using
the ‘exhaustive’ strategy, we do not recommend its use at this time.



The function will automatically filter entities that have not been seen by the model,
and operates on the assumption that the model provided has been fit on the data X
(determined heuristically), although X may be a subset of the original data, in
which case a warning is shown.

The target_rel argument indicates what relation to generate candidate statements for.
If this is set to None then all target relations will be considered for sampling.


	Parameters

	
	X (ndarray of shape (n, 3)) – The input knowledge graph used to train model, or a subset of it.


	model (EmbeddingModel) – The trained model that will be used to score candidate facts.


	top_n (int) – The cutoff position in ranking to consider a candidate triple as true positive.


	strategy (str) – The candidates generation strategy:


	
	’random_uniform’generates N candidates (\(N <= max_candidates\)) based on
	a uniform sampling of entities.







	
	’entity_frequency’generates candidates by weighted sampling of entities using
	entity frequency.







	
	’graph_degree’generates candidates by weighted sampling of entities with
	graph degree.







	
	’cluster_coefficient’generates candidates by weighted sampling entities
	with clustering coefficient.







	
	’cluster_triangles’generates candidates by weighted sampling entities
	with cluster triangles.







	
	’cluster_squares’generates candidates by weighted sampling entities
	with cluster squares.












	max_candidates (int or float) – The maximum numbers of candidates generated by strategy.
Can be an absolute number or a percentage [0,1] of the size of the X parameter.


	target_rel (str or list(str)) – Target relations to focus on. The function will discover facts only for that specific relation types.
If None, the function attempts to discover new facts for all relation types in the graph.


	seed (int) – Seed to use for reproducible results.






	Returns

	X_pred – A list of new facts predicted to be true.



	Return type

	ndarray, shape (n, 3)





Example

>>> import requests
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.datasets import load_from_csv
>>> from ampligraph.discovery import discover_facts
>>> # Game of Thrones relations dataset
>>> url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/GoT.csv'
>>> open('GoT.csv', 'wb').write(requests.get(url).content)
>>> dataset = load_from_csv('.', 'GoT.csv', sep=',')
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx')
>>> model.compile(optimizer='adam', loss='multiclass_nll')
>>> model.fit(dataset,
>>>           batch_size=100,
>>>           epochs=10,
>>>           validation_freq=50,
>>>           validation_batch_size=100,
>>>           validation_data = dataset['valid'])
>>> discover_facts(dataset,
>>>                model,
>>>                top_n=100,
>>>                strategy='random_uniform',
>>>                max_candidates=100,
>>>                target_rel='ALLIED_WITH',
>>>                seed=0)
Epoch 1/10
33/33 [==============================] - 1s 27ms/step - loss: 177.7778
Epoch 2/10
33/33 [==============================] - 0s 6ms/step - loss: 177.4795
Epoch 3/10
33/33 [==============================] - 0s 6ms/step - loss: 176.9654
Epoch 4/10
33/33 [==============================] - 0s 6ms/step - loss: 175.8453
Epoch 5/10
33/33 [==============================] - 0s 6ms/step - loss: 173.4385
Epoch 6/10
33/33 [==============================] - 0s 6ms/step - loss: 168.8143
Epoch 7/10
33/33 [==============================] - 0s 6ms/step - loss: 161.2919
Epoch 8/10
33/33 [==============================] - 0s 6ms/step - loss: 151.3496
Epoch 9/10
33/33 [==============================] - 0s 6ms/step - loss: 140.4268
Epoch 10/10
33/33 [==============================] - 0s 5ms/step - loss: 129.8206
3175 triples containing invalid keys skipped!
(array([['House Nymeros Martell of Sunspear', 'ALLIED_WITH',
         'House Mallister of Seagard'],
        ['Ben', 'ALLIED_WITH', 'House Mallister of Seagard'],
        ['Selwyn Tarth', 'ALLIED_WITH', 'House Mallister of Seagard'],
        ['Clarence Charlton', 'ALLIED_WITH', 'House Woods'],
        ['Selwyn Tarth', 'ALLIED_WITH', 'House Woods'],
        ['Dacks', 'ALLIED_WITH', 'Titus Peake'],
        ['Barra', 'ALLIED_WITH', 'Titus Peake'],
        ['House Chelsted', 'ALLIED_WITH', 'Denys Darklyn'],
        ['Crow Spike Keep', 'ALLIED_WITH', 'Denys Darklyn'],
        ['Selwyn Tarth', 'ALLIED_WITH', 'Denys Darklyn'],
        ['House Chelsted', 'ALLIED_WITH', 'House Belmore of Strongsong'],
        ['Barra', 'ALLIED_WITH', 'House Belmore of Strongsong'],
        ['Walder Frey', 'ALLIED_WITH', 'House Belmore of Strongsong']],
       dtype=object),
 array([ 2. , 53. , 73. , 42. , 18. , 59.5, 86. , 76.5, 31. , 60.5, 31.5,
        32. , 24. ]))












            

          

      

      

    

  

    
      
          
            
  
find_clusters


	
ampligraph.discovery.find_clusters(X, model, clustering_algorithm=DBSCAN(), mode='e')

	Perform link-based cluster analysis on a knowledge graph.

The clustering happens on the embedding space of the entities and relations.
For example, if we cluster some entities of a model that uses \(k=100\)
(i.e. embedding space of size 100), we will apply the chosen clustering algorithm
on the 100-dimensional space of the provided input samples.

Clustering can be used to evaluate the quality of the knowledge embeddings,
by comparing to natural clusters. For example, in the example below we cluster
the embeddings of international football matches and end up finding geographical
clusters very similar to the continents. This comparison can be subjective by
inspecting a 2D projection of the embedding space or objective using a
clustering metric [https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation].


The choice of the clustering algorithm and its corresponding tuning will greatly impact the results.
Please see scikit-learn documentation [https://scikit-learn.org/stable/modules/clustering.html#clustering]
for a list of algorithms, their parameters, and pros and cons.



Clustering is exclusive (i.e., a triple is assigned to one and only one cluster).


	Parameters

	
	X (ndarray, shape (n, 3) or (n)) – The input to be clustered.
X can either be the triples of a knowledge graph, its entities, or its relations.
The argument mode defines whether X is supposed to be an array of triples
or an array of either entities or relations.


	model (EmbeddingModel) – The fitted model that will be used to generate the embeddings.
This model must have been fully trained already, be it directly with
fit() or from a helper function such as ampligraph.evaluation.select_best_model_ranking().


	clustering_algorithm (object) – The initialized object of the clustering algorithm.
It should be ready to apply the fit_predict() method.
Please see: scikit-learn documentation [https://scikit-learn.org/stable/modules/clustering.html#clustering]
to understand the clustering API provided by scikit-learn.
The default clustering model is
sklearn’s DBSCAN [https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html]
with its default parameters.




	mode (str) – Clustering mode.

Choose from:


	
’e’ (default): the algorithm will cluster the embeddings of the provided entities.





	
’r’: the algorithm will cluster the embeddings of the provided relations.





	
’t’ : the algorithm will cluster the concatenation
of the embeddings of the subject, predicate and object for each triple.














	Returns

	labels – Index of the cluster each triple belongs to.



	Return type

	ndarray, shape [n]





Example

>>> # Note seaborn, matplotlib, adjustText are not AmpliGraph dependencies.
>>> # and must therefore be installed manually as:
>>> #
>>> # $ pip install seaborn matplotlib adjustText
>>>
>>> import requests
>>> import pandas as pd
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> from sklearn.cluster import KMeans
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>>
>>> # adjustText lib: https://github.com/Phlya/adjustText
>>> from adjustText import adjust_text
>>>
>>> from ampligraph.datasets import load_from_csv
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.discovery import find_clusters
>>>
>>> # International football matches triples
>>> # See tutorial here to understand how the triples are created from a tabular dataset:
>>> # https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/ClusteringAndClassificationWithEmbeddings.ipynb
>>> url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/football.csv'
>>> open('football.csv', 'wb').write(requests.get(url).content)
>>> X = load_from_csv('.', 'football.csv', sep=',')[:, 1:]
>>>
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                  k=300,
>>>                                  scoring_type='ComplEx')
>>> model.compile(optimizer='adam', loss='multiclass_nll')
>>> model.fit(X,
>>>           batch_size=10000,
>>>           epochs=10)
>>>
>>> df = pd.DataFrame(X, columns=["s", "p", "o"])
>>>
>>> teams = np.unique(np.concatenate((df.s[df.s.str.startswith("Team")],
>>>                                   df.o[df.o.str.startswith("Team")])))
>>> team_embeddings = model.get_embeddings(teams, embedding_type='e')
>>>
>>> embeddings_2d = PCA(n_components=2).fit_transform(np.array([i for i in team_embeddings]))
>>>
>>> # Find clusters of embeddings using KMeans
>>>
>>> kmeans = KMeans(n_clusters=6, n_init=100, max_iter=500)
>>> clusters = find_clusters(teams, model, kmeans, mode='e')
>>>
>>> # Plot results
>>> df = pd.DataFrame({"teams": teams, "clusters": "cluster" + pd.Series(clusters).astype(str),
>>>                    "embedding1": embeddings_2d[:, 0], "embedding2": embeddings_2d[:, 1]})
>>>
>>> plt.figure(figsize=(10, 10))
>>> plt.title("Cluster embeddings")
>>>
>>> ax = sns.scatterplot(data=df, x="embedding1", y="embedding2", hue="clusters")
>>>
>>> texts = []
>>> for i, point in df.iterrows():
>>>     if np.random.uniform() < 0.1:
>>>         texts.append(plt.text(point['embedding1']+.02, point['embedding2'], str(point['teams'])))
>>> adjust_text(texts)





[image: ../_images/clustered_embeddings_docstring.png]







            

          

      

      

    

  

    
      
          
            
  
find_duplicates


	
ampligraph.discovery.find_duplicates(X, model, mode='e', metric='l2', tolerance='auto', expected_fraction_duplicates=0.1, verbose=False)

	Find duplicate entities, relations or triples in a graph based on their embeddings.

For example, say you have a movie dataset that was scraped off the web with possible
duplicate movies. The movies in this case are the entities.
Therefore, you would use the “e” mode to find all the movies that could de duplicates of each other.

Duplicates are defined as points whose distance in the embedding space are smaller than
some given threshold (called the tolerance).

The tolerance can be defined a priori or be found via an optimisation procedure given
an expected fraction of duplicates. The optimisation algorithm applies a root-finding routine
to find the tolerance that gets to the closest expected fraction. The routine always converges.

Distance is defined by the chosen metric, which by default is the Euclidean distance (L2 norm).

As the distances are calculated on the embedding space,
the embeddings must be meaningful for this routine to work properly.
Therefore, it is suggested to evaluate the embeddings first using a metric such as MRR
before considering applying this method.


	Parameters

	
	X (ndarray, shape (n, 3) or (n)) – The input to be clustered.
X can either be the triples of a knowledge graph, its entities, or its relations.
The argument mode defines whether X is supposed to be an array of triples
or an array of either entities or relations.


	model (EmbeddingModel) – The fitted model that will be used to generate the embeddings.
This model must have been fully trained already, be it directly with fit()
or from a helper function such as ampligraph.evaluation.select_best_model_ranking().


	mode (str) – Specifies among which type of entities to look for duplicates.

Choose from:


	
’e’ (default): the algorithm will find duplicates of the provided entities based on their embeddings.





	
’r’: the algorithm will find duplicates of the provided relations based on their embeddings.





	
’t’ : the algorithm will find duplicates of the concatenation
of the embeddings of the subject, predicate and object for each provided triple.










	metric (str) – A distance metric used to compare entity distance in the embedding space.
See options here [https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html].


	tolerance (int or str) – Minimum distance (depending on the chosen metric) to define one entity as the
duplicate of another.
If ‘auto’, it will be determined automatically in a way that you get
the expected_fraction_duplicates.
The ‘auto’ option can be much slower than the regular one, as the finding duplicate
internal procedure will be repeated multiple times.


	expected_fraction_duplicates (float) – Expected fraction of duplicates to be found. It is used only when tolerance='auto'.
Should be between 0 and 1 (default: 0.1).


	verbose (bool) – Whether to print evaluation messages during optimisation when tolerance='auto'
(default: False).






	Returns

	
	duplicates (set of frozensets) – Each entry in the duplicates set is a frozenset containing all entities that were found
to be duplicates according to the metric and tolerance.
Each frozenset will contain at least two entities.


	tolerance (float) – Tolerance used to find the duplicates (useful if the automatic tolerance option is selected).










Example

>>> import pandas as pd
>>> import numpy as np
>>> import re
>>> from ampligraph.latent_features.models import ScoringBasedEmbeddingModel
>>> # The IMDB dataset used here is part of the Movies5 dataset found on:
>>> # The Magellan Data Repository (https://sites.google.com/site/anhaidgroup/projects/data)
>>> import requests
>>> url = 'http://pages.cs.wisc.edu/~anhai/data/784_data/movies5.tar.gz'
>>> open('movies5.tar.gz', 'wb').write(requests.get(url).content)
>>> import tarfile
>>> tar = tarfile.open('movies5.tar.gz', "r:gz")
>>> tar.extractall()
>>> tar.close()
>>>
>>> # Reading tabular dataset of IMDB movies and filling the missing values
>>> imdb = pd.read_csv("movies5/csv_files/imdb.csv")
>>> imdb["directors"] = imdb["directors"].fillna("UnknownDirector")
>>> imdb["actors"] = imdb["actors"].fillna("UnknownActor")
>>> imdb["genre"] = imdb["genre"].fillna("UnknownGenre")
>>> imdb["duration"] = imdb["duration"].fillna("0")
>>>
>>> # Creating knowledge graph triples from tabular dataset
>>> imdb_triples = []
>>>
>>> for _, row in imdb.iterrows():
>>>     movie_id = "ID" + str(row["id"])
>>>     directors = row["directors"].split(",")
>>>     actors = row["actors"].split(",")
>>>     genres = row["genre"].split(",")
>>>     duration = "Duration" + str(int(re.sub("\D", "", row["duration"])) // 30)
>>>
>>>     directors_triples = [(movie_id, "hasDirector", d) for d in directors]
>>>     actors_triples = [(movie_id, "hasActor", a) for a in actors]
>>>     genres_triples = [(movie_id, "hasGenre", g) for g in genres]
>>>     duration_triple = (movie_id, "hasDuration", duration)
>>>
>>>
>>>     imdb_triples.extend(directors_triples)
>>>     imdb_triples.extend(actors_triples)
>>>     imdb_triples.extend(genres_triples)
>>>     imdb_triples.append(duration_triple)
>>>
>>> # Training knowledge graph embedding with ComplEx model
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>>
>>> imdb_triples = np.array(imdb_triples)
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx')
>>> model.compile(optimizer='adam', loss='multiclass_nll')
>>> model.fit(imdb_triples,
>>>           batch_size=10000,
>>>           epochs=10)
>>>
>>> # Finding duplicates movies (entities)
>>> from ampligraph.discovery import find_duplicates
>>>
>>> entities = np.unique(imdb_triples[:, 0])
>>> dups, _ = find_duplicates(entities, model, mode='e', tolerance=0.45)
>>> id_list = []
>>> for data in dups:
>>>     for i in data:
>>>         id_list.append(int(i[2:]))
>>> print(imdb.iloc[id_list[:6]][['movie_name', 'year']])
Epoch 1/10
7/7 [==============================] - 1s 122ms/step - loss: 15612.8799
Epoch 2/10
7/7 [==============================] - 0s 20ms/step - loss: 15610.5010
Epoch 3/10
7/7 [==============================] - 0s 19ms/step - loss: 15607.7412
Epoch 4/10
7/7 [==============================] - 0s 19ms/step - loss: 15604.0674
Epoch 5/10
7/7 [==============================] - 0s 20ms/step - loss: 15598.9365
Epoch 6/10
7/7 [==============================] - 0s 19ms/step - loss: 15591.7188
Epoch 7/10
7/7 [==============================] - 0s 19ms/step - loss: 15581.6055
Epoch 8/10
7/7 [==============================] - 0s 20ms/step - loss: 15567.6807
Epoch 9/10
7/7 [==============================] - 0s 20ms/step - loss: 15548.8184
Epoch 10/10
7/7 [==============================] - 0s 21ms/step - loss: 15523.8721
           movie_name  year
5198    Duel to Death  1983
5199    Duel to Death  1983
2649   The Eliminator  2004
2650   The Eliminator  2004
3967  Lipstick Camera  1994
3968  Lipstick Camera  1994












            

          

      

      

    

  

    
      
          
            
  
query_topn


	
ampligraph.discovery.query_topn(model, top_n=10, head=None, relation=None, tail=None, ents_to_consider=None, rels_to_consider=None)

	Queries the model with two elements of a triple and returns the top_n results of
all possible completions ordered by score predicted by the model.

For example, given a <subject, predicate> pair in the arguments, the model will score
all possible triples <subject, predicate, ?>, filling in the missing element with known
entities, and return the top_n triples ordered by score. If given a <subject, object>
pair it will fill in the missing element with known relations.

Therefore, if we feed the funcion with <subject, predicate> or <predicate, object>, it
solves the link prediction task.


Note

This function does not filter out true statements - triples returned can include those
the model was trained on.




	Parameters

	
	model (ScoringBasedEmbeddingModel) – The trained model that will be used to score triple completions.


	top_n (int) – The number of completed triples to returned.


	head (str) – An entity string to query.


	relation (str) – A relation string to query.


	tail (str) – An object string to query.


	ents_to_consider (array-like) – List of entities to use for triple completions. If None, will generate completions
using all distinct entities (default: None).


	rels_to_consider (array-like) – List of relations to use for triple completions. If None, will generate completions
using all distinct relations (default: None).






	Returns

	
	X (ndarray of shape (n, 3)) – A list of triples ordered by score.


	S (ndarray, shape (n)) – A list of scores.










Example

>>> import requests
>>> from ampligraph.datasets import load_from_csv
>>> from ampligraph.discovery import discover_facts
>>> from ampligraph.discovery import query_topn
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> # Game of Thrones relations dataset
>>> url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/GoT.csv'
>>> open('GoT.csv', 'wb').write(requests.get(url).content)
>>> X = load_from_csv('.', 'GoT.csv', sep=',')
>>>
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=150,
>>>                                    scoring_type='TransE')
>>> model.compile(optimizer='adagrad', loss='pairwise')
>>> model.fit(X,
>>>           batch_size=100,
>>>           epochs=20,
>>>           verbose=False)
>>>
>>> query_topn(model, top_n=5,
>>>            head='Eddard Stark', relation='ALLIED_WITH', tail=None,
>>>            ents_to_consider=None, rels_to_consider=None)
>>>
(array([['Eddard Stark', 'ALLIED_WITH', 'Smithyton'],
        ['Eddard Stark', 'ALLIED_WITH', 'Eden Risley'],
        ['Eddard Stark', 'ALLIED_WITH', 'House Westbrook'],
        ['Eddard Stark', 'ALLIED_WITH', 'House Leygood'],
        ['Eddard Stark', 'ALLIED_WITH', 'House Bridges']], dtype='<U44'),
 array([9.000417 , 5.272001 , 5.1876183, 5.121145 , 5.0564814],
       dtype=float32))












            

          

      

      

    

  

    
      
          
            
  
Utils

This module contains utility functions for neural knowledge graph
embedding models.

This module contains utility functions for Knowledge Graph Embedding models.


Saving/Restoring Models

Models can be saved and restored from disk. This is useful to avoid re-training a model. On the contrary of what happens
for save_weights() and
save_weights(), the functions below allow to restart
the model training from where it was interrupted when the model was first saved.







	save_model(model[, model_name_path, protocol])

	Save a trained model to disk.



	restore_model([model_name_path])

	Restore a trained model from disk.








Visualization

Functions to visualize embeddings.







	create_tensorboard_visualizations(model, loc)

	Export embeddings to Tensorboard.








Others

Function various functions to be used at need.







	dataframe_to_triples(X, schema)

	Convert DataFrame into triple format.



	preprocess_focusE_weights(data, weights[, ...])

	Preprocessing of focusE weights.










            

          

      

      

    

  

    
      
          
            
  
save_model


	
ampligraph.utils.save_model(model, model_name_path=None, protocol=5)

	Save a trained model to disk.

Example

>>> import numpy as np
>>> from ampligraph.latent_features import ComplEx
>>> from ampligraph.utils import save_model
>>> model = ComplEx(batches_count=2, seed=555, epochs=20, k=10)
>>> X = np.array([['a', 'y', 'b'],
>>>               ['b', 'y', 'a'],
>>>               ['a', 'y', 'c'],
>>>               ['c', 'y', 'a'],
>>>               ['a', 'y', 'd'],
>>>               ['c', 'y', 'd'],
>>>               ['b', 'y', 'c'],
>>>               ['f', 'y', 'e']])
>>> model.fit(X)
>>> y_pred_before = model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
>>> example_name = 'helloworld.pkl'
>>> save_model(model, model_name_path=example_name)
>>> print(y_pred_before)
[-0.29721245, 0.07865551]






	Parameters

	
	model (EmbeddingModel) – A trained neural knowledge graph embedding model.
The model must be an instance of TransE, DistMult, ComplEx, HolE or RotatE.


	model_name_path (str) – The name of the model to be saved.
If not specified, a default name with current datetime is selected and the model is saved
to the working directory.















            

          

      

      

    

  

    
      
          
            
  
restore_model


	
ampligraph.utils.restore_model(model_name_path=None)

	Restore a trained model from disk.


	Parameters

	model_name_path (str) – Name of the path to the model.












            

          

      

      

    

  

    
      
          
            
  
create_tensorboard_visualizations


	
ampligraph.utils.create_tensorboard_visualizations(model, loc, entities_subset='all', labels=None, write_metadata=True, export_tsv_embeddings=True)

	Export embeddings to Tensorboard.

This function exports embeddings to disk in a format used by
TensorBoard [https://www.tensorflow.org/tensorboard] and
TensorBoard Embedding Projector [https://projector.tensorflow.org].
The function exports:


	A number of checkpoint and graph embedding files in the provided location that will allow
the visualization of the embeddings using Tensorboard. This is generally for use with a
local Tensorboard instance [https://www.tensorflow.org/tensorboard/r1/overview].


	A tab-separated file of embeddings named embeddings_projector.tsv. This is generally used to
visualize embeddings by uploading to TensorBoard Embedding Projector [https://projector.tensorflow.org].


	
	Embeddings metadata (i.e., the embedding labels from the original knowledge graph) saved to in a file named
	metadata.tsv`. Such file can be used in TensorBoard or uploaded to TensorBoard Embedding Projector.









The content of loc will look like:

tensorboard_files/
    ├── checkpoint
    ├── embeddings_projector.tsv
    ├── graph_embedding.ckpt.data-00000-of-00001
    ├── graph_embedding.ckpt.index
    ├── graph_embedding.ckpt.meta
    ├── metadata.tsv
    └── projector_config.pbtxt






Note

A TensorBoard guide is available here [https://www.tensorflow.org/tensorboard/r1/overview].




Note

Uploading embeddings_projector.tsv and metadata.tsv to
TensorBoard Embedding Projector [https://projector.tensorflow.org] will give a result
similar to the picture below:

[image: ../_images/embeddings_projector.png]


Example

>>> # create model and compile using user defined optimizer settings and user defined settings of an existing loss
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.latent_features.loss_functions import SelfAdversarialLoss
>>> import tensorflow as tf
>>> optim = tf.optimizers.Adam(learning_rate=0.01)
>>> loss = SelfAdversarialLoss({'margin': 0.1, 'alpha': 5, 'reduction': 'sum'})
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer=optim, loss=loss)
>>> model.fit('./fb15k-237/train.txt',
>>>           batch_size=10000,
>>>           epochs=5)
Epoch 1/5
29/29 [==============================] - 2s 67ms/step - loss: 13101.9443
Epoch 2/5
29/29 [==============================] - 1s 20ms/step - loss: 11907.5771
Epoch 3/5
29/29 [==============================] - 1s 21ms/step - loss: 10890.3447
Epoch 4/5
29/29 [==============================] - 1s 20ms/step - loss: 9520.3994
Epoch 5/5
29/29 [==============================] - 1s 20ms/step - loss: 8314.7529
>>> from ampligraph.utils import create_tensorboard_visualizations
>>> create_tensorboard_visualizations(model,
                                      entities_subset='all',
                                      loc = './full_embeddings_vis')
>>> # On terminal run: tensorboard --logdir='./full_embeddings_vis' --port=8891
>>> # Open the browser and go to the following URL: http://127.0.0.1:8891/#projector






	Parameters

	
	model (EmbeddingModel) – A trained neural knowledge graph embedding model, the model must be an instance of TransE,
DistMult, ComplEx, HolE or RotatE.


	loc (str) – Directory where the files are written.


	entities_subset (list) – List of entities whose embeddings have to be visualized.


	labels (pd.DataFrame) – Label(s) for each embedding point in the Tensorboard visualization.
Default behaviour is to use the embedding labels included in the model.


	export_tsv_embeddings (bool) – If True (default), will generate a tab-separated file of embeddings at the given path.
This is generally used to visualize embeddings by uploading to
TensorBoard Embedding Projector [https://projector.tensorflow.org].




	write_metadata (bool) – If True (default), will write a file named ‘metadata.tsv’ in the same directory as path.















            

          

      

      

    

  

    
      
          
            
  
dataframe_to_triples


	
ampligraph.utils.dataframe_to_triples(X, schema)

	Convert DataFrame into triple format.


	Parameters

	
	X (pd.DataFrame with headers) – 


	schema (list of tuples) – List of (subject, relation_name, object) tuples where subject and object are in the headers of the data frame.








Example

>>> import pandas as pd
>>> import numpy as np
>>> from ampligraph.utils.model_utils import dataframe_to_triples
>>>
>>> X = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')
>>>
>>> schema = [['species', 'has_sepal_length', 'sepal_length']]
>>>
>>> dataframe_to_triples(X, schema)[0]
array(['setosa', 'has_sepal_length', '5.1'], dtype='<U16')












            

          

      

      

    

  

    
      
          
            
  
preprocess_focusE_weights


	
ampligraph.utils.preprocess_focusE_weights(data, weights, normalize=True)

	Preprocessing of focusE weights.

Extract weights from data, remove NaNs, average weights and normalize them
if self.focusE_params['normalize_numeric_values']==True.


	Parameters

	
	data (array-like, shape (n,m)) – Array of shape (n,m) with \(m=4\). If weights=None, data contains triples
and weights (\(m>3\)). If weights is passed, data only contains triples (\(m=3\)).


	weights (array-like) – If not None, weights has shape (n, m-3), with m>0.


	normalize (bool) – Specify whether to normalize the weights into the [0,1] range (default: True).






	Returns

	processed_weights – An array of weights properly preprocessed and averaged into a unique vector if more than one vector of
weights were given.



	Return type

	np.array, shape (n, 1)












            

          

      

      

    

  

    
      
          
            
  
Pre-Trained Models

Support for loading and managing pretrained models.

This module provides an API to download and have ready to use pre-trained
ScoringBasedEmbeddingModel.







	load_pretrained_model(dataset, scoring_type)

	Function to load a pretrained model.






Currently the available models are trained on “FB15K-237”, “WN18RR”, “YAGO310”, “FB15K” and “WN18” and have as
scoring function “TransE”, “DistMult”, “ComplEx”, “HolE” and “RotatE”.




            

          

      

      

    

  

    
      
          
            
  
How to Contribute


Git Repo and Issue Tracking

[image: ] [https://GitHub.com/Accenture/AmpliGraph/stargazers/]

AmpliGraph repository is available on GitHub [https://github.com/Accenture/AmpliGraph].

A list of open issues is available here [https://github.com/Accenture/AmpliGraph/issues].

Join the conversation on Slack [https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg]
[image: ]



How to Contribute

We welcome community contributions, whether they are new models, tests, or documentation.

You can contribute to AmpliGraph in many ways:


	Raise a bug report [https://github.com/Accenture/AmpliGraph/issues/new?assignees=&labels=&template=bug_report.md&title=]


	File a feature request [https://github.com/Accenture/AmpliGraph/issues/new?assignees=&labels=&template=feature_request.md&title=]


	Help other users by commenting on the issue tracking system [https://github.com/Accenture/AmpliGraph/issues]


	Add unit tests


	Improve the documentation


	Add a new graph embedding model (see below)






Adding Your Own Model

The landscape of knowledge graph embeddings evolves rapidly.
We welcome new models as a contribution to AmpliGraph, which has been built to provide a shared codebase to guarantee a
fair evalaution and comparison acros models.

You can add your own model by raising a pull request.

To get started, read the documentation on how current models have been implemented.



Clone and Install in editable mode

Clone the repository and checkout the develop branch.
Install from source with pip. use the -e flag to enable editable mode [https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs]:

git clone https://github.com/Accenture/AmpliGraph.git
git checkout develop
cd AmpliGraph
pip install -e .







Unit Tests

To run all the unit tests:

$ pytest tests





See pytest documentation [https://docs.pytest.org/en/latest/] for additional arguments.



Documentation

The project documentation [https://docs.ampligraph.org] is based on Sphinx and can be built on your local working
copy as follows:

cd docs
make clean autogen html





The above generates an HTML version of the documentation under docs/_built/html.



Packaging

To build an AmpliGraph custom wheel, do the following:

pip wheel --wheel-dir dist --no-deps .









            

          

      

      

    

  

    
      
          
            
  
Examples

These examples show how to get started with AmpliGraph APIs, and cover a range of useful tasks.
Note that additional tutorials are also available.


Train and evaluate an embedding model

import numpy as np
from ampligraph.datasets import load_wn18
from ampligraph.latent_features import ScoringBasedEmbeddingModel
from ampligraph.evaluation import mrr_score, hits_at_n_score
from ampligraph.latent_features.loss_functions import get as get_loss
from ampligraph.latent_features.regularizers import get as get_regularizer
import tensorflow as tf

# load Wordnet18 dataset:
X = load_wn18()

# Initialize a ComplEx neural embedding model: the embedding size is k,
# eta specifies the number of corruptions to generate per each positive,
# scoring_type determines the scoring function of the embedding model.
model = ScoringBasedEmbeddingModel(k=150,
                                   eta=10,
                                   scoring_type='ComplEx')

# Optimizer, loss and regularizer definition
optim = tf.keras.optimizers.Adam(learning_rate=1e-3)
loss = get_loss('pairwise', {'margin': 0.5})
regularizer = get_regularizer('LP', {'p': 2, 'lambda': 1e-5})

# Compilation of the model
model.compile(optimizer=optim, loss=loss, entity_relation_regularizer=regularizer)

# For evaluation, we can use a filter which would be used to filter out
# positives statements created by the corruption procedure.
# Here we define the filter set by concatenating all the positives
filter = {'test' : np.concatenate((X['train'], X['valid'], X['test']))}

# Early Stopping callback
checkpoint = tf.keras.callbacks.EarlyStopping(
    monitor='val_{}'.format('hits10'),
    min_delta=0,
    patience=5,
    verbose=1,
    mode='max',
    restore_best_weights=True
)

# Fit the model on training and validation set
model.fit(X['train'],
          batch_size=int(X['train'].shape[0] / 10),
          epochs=20,                    # Number of training epochs
          validation_freq=20,           # Epochs between successive validation
          validation_burn_in=100,       # Epoch to start validation
          validation_data=X['valid'],   # Validation data
          validation_filter=filter,     # Filter positives from validation corruptions
          callbacks=[checkpoint],       # Early stopping callback (more from tf.keras.callbacks are supported)
          verbose=True                  # Enable stdout messages
          )


# Run the evaluation procedure on the test set (with filtering)
# To disable filtering: use_filter=None
# Usually, we corrupt subject and object sides separately and compute ranks
ranks = model.evaluate(X['test'],
                       use_filter=filter,
                       corrupt_side='s,o')

# compute and print metrics:
mrr = mrr_score(ranks)
hits_10 = hits_at_n_score(ranks, n=10)
print("MRR: %f, Hits@10: %f" % (mrr, hits_10))
# Output: MRR: 0.884418, Hits@10: 0.935500







Model selection

from ampligraph.datasets import load_wn18
from ampligraph.evaluation import select_best_model_ranking

# load Wordnet18 dataset:
X_dict = load_wn18()

model_class = 'ComplEx'

# Use the template given below for doing grid search. 
param_grid = {
                 "batches_count": [10],
                 "seed": 0,
                 "epochs": [300],
                 "k": [100, 50],
                 "eta": [5,10],
                 "loss": ["pairwise", "nll", "self_adversarial"],
                 # We take care of mapping the params to corresponding classes
                 "loss_params": {
                     #margin corresponding to both pairwise and adverserial loss
                     "margin": [0.5, 20], 
                     #alpha corresponding to adverserial loss
                     "alpha": [0.5]
                 },
                 "embedding_model_params": {
                     # generate corruption using all entities during training
                     "negative_corruption_entities":"all"
                 },
                 "regularizer": [None, "LP"],
                 "regularizer_params": {
                     "p": [2],
                     "lambda": [1e-4, 1e-5]
                 },
                 "optimizer": ["adam"],
                 "optimizer_params":{
                     "lr": [0.01, 0.0001]
                 },
                 "verbose": True
             }

# Train the model on all possibile combinations of hyperparameters.
# Models are validated on the validation set.
# It returnes a model re-trained on training and validation sets.
best_model, best_params, best_mrr_train, \
ranks_test, test_evaluation, experimental_history = \
                        select_best_model_ranking(model_class, # Name of the model to be used
                                                  # Dataset 
                                                  X_dict['train'],
                                                  X_dict['valid'],
                                                  X_dict['test'],          
                                                  # Parameter grid
                                                  param_grid,
                                                  # Set maximum number of combinations
                                                  max_combinations=20,
                                                  # Use filtered set for eval
                                                  use_filter=True, 
                                                  # corrupt subject and objects separately during eval
                                                  corrupt_side='s,o', 
                                                  # Log all the model hyperparams and evaluation stats
                                                  verbose=True)
print(type(best_model).__name__)
print("Best model parameters: ")
print(best_params)
print("Best MRR train: ", best_mrr_train)
print("Test evaluation: ", test_evaluation)
# Output:
# ComplEx

# Best model parameters:
# {'batches_count': 10, 'seed': 0, 'epochs': 300, 'k': 100, 'eta': 10,
# 'loss': 'self_adversarial', 'loss_params': {'margin': 0.5, 'alpha': 0.5},
# 'embedding_model_params': {'negative_corruption_entities': 'all'}, 'regularizer': 'LP',
# 'regularizer_params': {'p': 2, 'lambda': 0.0001}, 'optimizer': 'adam',
# 'optimizer_params': {'lr': 0.01}, 'verbose': True}

# Best MRR train: 0.9341455440346633 

# Test evaluation: {'mrr': 0.934852832005159, 'mr': 674.1877, 'hits_1': 0.9276, 'hits_3': 0.9406, 'hits_10': 0.9454}









Get the embeddings

import numpy as np
from ampligraph.latent_features import ScoringBasedEmbeddingModel

model = ScoringBasedEmbeddingModel(k=5, eta=1, scoring_type='TransE')
model.compile(optimizer='adam', loss='nll')
X = np.array([['a', 'y', 'b'],
              ['b', 'y', 'a'],
              ['a', 'y', 'c'],
              ['c', 'y', 'a'],
              ['a', 'y', 'd'],
              ['c', 'y', 'd'],
              ['b', 'y', 'c'],
              ['f', 'y', 'e']])
model.fit(X, epochs=5)
model.get_embeddings(['f','e'], embedding_type='e')
# Output
# [[ 0.5677353   0.65208733  0.66626084  0.7323714   0.43467668]
#  [-0.7102897   0.59935296  0.17629518  0.5096843  -0.53681636]]







Save and Restore a Model

import numpy as np
from ampligraph.latent_features import ScoringBasedEmbeddingModel
from ampligraph.utils import save_model, restore_model

model = ScoringBasedEmbeddingModel(k=5, eta=1, scoring_type='ComplEx')
model.compile(optimizer='adam', loss='nll')

X = np.array([['a', 'y', 'b'],
              ['b', 'y', 'a'],
              ['a', 'y', 'c'],
              ['c', 'y', 'a'],
              ['a', 'y', 'd'],
              ['c', 'y', 'd'],
              ['b', 'y', 'c'],
              ['f', 'y', 'e']])

model.fit(X, epochs=5)

#  Use the trained model to predict
y_pred_before = model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
print(y_pred_before)
# [ 0.1416718 -0.0070735]

# Save the model
example_name = "helloworld.pkl"
save_model(model, model_name_path=example_name)

# Restore the model
restored_model = restore_model(model_name_path=example_name)

# Use the restored model to predict
y_pred_after = restored_model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
print(y_pred_after)
# [ 0.1416718 -0.0070735]







Split dataset into train/test or train/valid/test

import numpy as np
from ampligraph.evaluation import train_test_split_no_unseen
from ampligraph.datasets import load_from_csv

'''
Assume we have a knowledge graph stored in my_folder/my_graph.csv,
and that the content of such file is:

a,y,b
f,y,e
b,y,a
a,y,c
c,y,a
a,y,d
c,y,d
b,y,c
f,y,e
'''

# Load the graph in memory
X = load_from_csv('my_folder', 'my_graph.csv', sep=',')

# To split the graph in train and test sets:
# (In this toy example the test set will include only two triples)
X_train, X_test = train_test_split_no_unseen(X, test_size=2)

print(X_train)

'''
X_train:[['a' 'y' 'b']
         ['f' 'y' 'e']
         ['b' 'y' 'a']
         ['c' 'y' 'a']
         ['c' 'y' 'd']
         ['b' 'y' 'c']
         ['f' 'y' 'e']]
'''

print(X_test)

'''
X_test: [['a' 'y' 'c']
         ['a' 'y' 'd']]
'''


# To split the graph in train, validation, and test the method must be called twice:
X_train_valid, X_test = train_test_split_no_unseen(X, test_size=2)
X_train, X_valid = train_test_split_no_unseen(X_train_valid, test_size=2)

print(X_train)
'''
X_train:  [['a' 'y' 'b']
           ['b' 'y' 'a']
           ['c' 'y' 'd']
           ['b' 'y' 'c']
           ['f' 'y' 'e']]
'''

print(X_valid)
'''
X_valid:  [['f' 'y' 'e']
           ['c' 'y' 'a']]
'''

print(X_test)
'''
X_test:  [['a' 'y' 'c']
          ['a' 'y' 'd']]
'''








Clustering and Visualizing Embeddings


Model Training and Evaluation

import numpy as np
import requests
import tensorflow as tf

from ampligraph.datasets import load_from_csv
from ampligraph.latent_features import ScoringBasedEmbeddingModel
from ampligraph.latent_features.loss_functions import get as get_loss
from ampligraph.latent_features.regularizers import get as get_regularizer
from ampligraph.evaluation import mr_score, mrr_score, hits_at_n_score
from ampligraph.evaluation import train_test_split_no_unseen

# International football matches triples
url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/football.csv'
open('football.csv', 'wb').write(requests.get(url).content)
X = load_from_csv('.', 'football.csv', sep=',')[:, 1:]

# Train test split
X_train, X_test = train_test_split_no_unseen(X, test_size=10000)

# # # MODEL TRAINING # # #

# Initialize a ComplEx neural embedding model
model = ScoringBasedEmbeddingModel(k=100,
                                   eta=20,
                                   scoring_type='ComplEx')

# Optimizer, loss and regularizer definition
optim = tf.keras.optimizers.Adam(learning_rate=1e-4)
loss = get_loss('multiclass_nll')
regularizer = get_regularizer('LP', {'p': 3, 'lambda': 1e-5})

# Compilation of the model
model.compile(optimizer=optim, loss=loss, entity_relation_regularizer=regularizer)

# Fit the model
model.fit(X_train,
          batch_size=int(X_train.shape[0] / 50),
          epochs=300,  # Number of training epochs
          verbose=True  # Enable stdout messages
          )

# # # MODEL EVALUATION # # #
# Specify triples to filter out of corruptions since true positives
filter_triples = {'test': np.concatenate((X_train, X_test))}
# Evaluation of the model
ranks = model.evaluate(X_test,
                       use_filter=filter_triples,
                       verbose=True)

mr = mr_score(ranks)
mrr = mrr_score(ranks)

print("MRR: %.2f" % (mrr))
print("MR: %.2f" % (mr))

hits_10 = hits_at_n_score(ranks, n=10)
print("Hits@10: %.2f" % (hits_10))
hits_3 = hits_at_n_score(ranks, n=3)
print("Hits@3: %.2f" % (hits_3))
hits_1 = hits_at_n_score(ranks, n=1)
print("Hits@1: %.2f" % (hits_1))
# Output:
# MRR: 0.29
# MR: 3450.72
# Hits@10: 0.41
# Hits@3: 0.34
# Hits@1: 0.22







Clustering and 2D Projections

Please install lib adjustText using the following command: pip install adjustText.
Further, please install pycountry_convert with the following command: pip install pycountry_convert.
This library is used to map countries to the corresponding continents.

import pandas as pd
import re
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
from adjustText import adjust_text
import pycountry_convert as pc
from ampligraph.discovery import find_clusters

# Get the teams entities and their corresponding embeddings
triples_df = pd.DataFrame(X, columns=['s', 'p', 'o'])
teams = triples_df.s[triples_df.s.str.startswith('Team')].unique()
team_embeddings = dict(zip(teams, model.get_embeddings(teams)))
team_embeddings_array = np.array([i for i in team_embeddings.values()])

# Project embeddings into 2D space via PCA in order to plot them
embeddings_2d = PCA(n_components=2).fit_transform(team_embeddings_array)

# Cluster embeddings (on the original space)
clustering_algorithm = KMeans(n_clusters=6, n_init=100, max_iter=500, random_state=0)
clusters = find_clusters(teams, model, clustering_algorithm, mode='e')

# This function maps country to continent
def cn_to_ctn(team_name):
    try:
        country_name = ' '.join(re.findall('[A-Z][^A-Z]*', team_name[4:]))
        country_alpha2 = pc.country_name_to_country_alpha2(country_name)
        country_continent_code = pc.country_alpha2_to_continent_code(country_alpha2)
        country_continent_name = pc.convert_continent_code_to_continent_name(country_continent_code)
        return country_continent_name
    except KeyError:
        return "unk"


plot_df = pd.DataFrame({"teams": teams,
                        "embedding1": embeddings_2d[:, 0],
                        "embedding2": embeddings_2d[:, 1],
                        "continent": pd.Series(teams).apply(cn_to_ctn),
                        "cluster": "cluster" + pd.Series(clusters).astype(str)})

# Top 20 teams in 2019 according to FIFA rankings
top20teams = ["TeamBelgium", "TeamFrance", "TeamBrazil", "TeamEngland", "TeamPortugal",
              "TeamCroatia", "TeamSpain", "TeamUruguay", "TeamSwitzerland", "TeamDenmark",
              "TeamArgentina", "TeamGermany", "TeamColombia", "TeamItaly", "TeamNetherlands",
              "TeamChile", "TeamSweden", "TeamMexico", "TeamPoland", "TeamIran"]

np.random.seed(0)

# Plot 2D embeddings with country labels
def plot_clusters(hue):
    plt.figure(figsize=(12, 12))
    plt.title("{} embeddings".format(hue).capitalize())
    ax = sns.scatterplot(data=plot_df[plot_df.continent != "unk"],
                         x="embedding1", y="embedding2", hue=hue)
    texts = []
    for i, point in plot_df.iterrows():
        if point["teams"] in top20teams or np.random.random() < 0.1:
            texts.append(plt.text(point['embedding1'] + 0.02,
                                  point['embedding2'] + 0.01,
                                  str(point["teams"])))
    adjust_text(texts)

    plt.savefig(hue + '_cluster_ex.png')

plot_clusters("continent")
plot_clusters("cluster")







Results Visualization

plot_clusters("continent")
plot_clusters("cluster")





[image: ]
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Tutorials

For a comprehensive theoretical and hands-on overview of KGE models and hands-on AmpliGraph, check out our tutorials:
COLING-22 KGE4NLP Tutorial (Slides + Colab Notebook) [https://kge4nlp-coling22.github.io/] and ECAI-20 Tutorial (Slides + Recording + Colab Notebook) [https://kge-tutorial-ecai2020.github.io/].

The following Jupyter notebooks will guide you through the most important features of AmpliGraph:


	AmpliGraph basics: training, saving and restoring a model, evaluating a model,
discover new links, visualize embeddings.
[Jupyter notebook [https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/AmpliGraphBasicsTutorial.ipynb]]
[Colab notebook [https://colab.research.google.com/drive/1rylqOnm992AdP9z1aW8metlKpPuBTRGD]]


	Link-based clustering and classification: how to use the
knowledge embeddings generated by a graph of international football matches in clustering and classification tasks.
[Jupyter notebook [https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/ClusteringAndClassificationWithEmbeddings.ipynb]]
[Colab notebook [https://colab.research.google.com/drive/1QUphvcFvNsWyRZM_J5ahsLhEHJY4SjyS]]




Additional examples and code snippets are available here.

If you reuse materials presented in the tutorials, cite as:

@misc{kge4nlp_tutorial_coling22,
	title = {Knowledge Graph Embeddings for NLP: From Theory to Practice},
	url = {https://kge4nlp-coling22.github.io/},
    author= {Luca Costabello and
             Adrianna Janik and
             Eda Bayram and
             Sumit Pai},
	date = {2022-16-10},
    note = {COLING 2022 Tutorials}
}





@misc{kge_tutorial_ecai20,
	title = {Knowledge Graph Embeddings Tutorial: From Theory to Practice},
	url = {http://kge-tutorial-ecai-2020.github.io/},
    author= {Luca Costabello and
             Sumit Pai and
             Adrianna Janik and
             Nick McCarthy},
	shorttitle = {Knowledge Graph Embeddings Tutorial},
	date = {2020-09-04},
    note = {ECAI 2020 Tutorials}
}








            

          

      

      

    

  

    
      
          
            
  
Performance


Predictive Performance

We report AmpliGraph filtered MR, MRR, Hits@1,3,10 results for the most common datasets used in literature.


Note

AmpliGraph 1.x Benchmarks.
AmpliGraph 1.x predictive power report is available here [https://docs.ampligraph.org/en/1.4.0/experiments.html].





FB15K-237












	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	222

	0.31

	0.22

	0.35

	0.49

	k: 400;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:
norm: 1;
seed: 0;
batches_count: 5;



	DistMult

	211

	0.30

	0.21

	0.33

	0.48

	k: 300;
epochs: 4000;
eta: 50;
loss: multiclass_nll;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
optimizer: adam;
optimizer_params:
lr: 0.00005;
seed: 0;
batches_count: 50;



	ComplEx

	204

	0.31

	0.22

	0.34

	0.49

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 0.00005;
seed: 0;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
batches_count: 10;



	HolE

	190

	0.30

	0.21

	0.33

	0.48

	k: 350;
epochs: 4000;
eta: 50;
loss: multiclass_nll;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
optimizer: adam;
optimizer_params:
lr: 0.0001;
seed: 0;
batches_count: 64;



	RotatE

	162

	0.31

	0.22

	0.35

	0.51

	k:350;
epochs’: 700;
eta: 20;
loss: self_adversarial;
loss_params:
{‘margin’: 5, ‘alpha’: 1.0};
optimizer: ‘adam’;
learning_rate: 1e-05;
regularizer: LP;
regularizer_params:
{‘p’: 3, ‘lambda’: 0.001};
batches_count: 55







Note

FB15K-237 validation and test sets include triples with entities that do not occur
in the training set. We found 8 unseen entities in the validation set and 29 in the test set.
In the experiments we excluded the triples where such entities appear (9 triples in from the validation
set and 28 from the test set).





WN18RR












	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	3143

	0.22

	0.03

	0.38

	0.52

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 0.0001;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
seed: 0;
embedding_model_params:
norm: 1;
batches_count: 150;



	DistMult

	4832

	0.47

	0.43

	0.48

	0.54

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 0.0001;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
seed: 0;
batches_count: 100;



	ComplEx

	4356

	0.51

	0.47

	0.52

	0.58

	k: 200;
epochs: 4000;
eta: 20;
loss: multiclass_nll;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
regularizer: LP;
regularizer_params:
lambda: 0.05;
p: 3;
batches_count: 10;



	HolE

	7072

	0.47

	0.44

	0.49

	0.54

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 50;



	RotatE

	1839

	0.52

	0.47

	0.53

	0.61

	k: 350;
epochs: 350;
eta: 20;
loss: self_adversarial;
loss_params;
{‘margin’: 5, ‘alpha’: 0.5};
optimizer: adam;
learning_rate: 0.000;
regularizer: ‘LP’;
regularizer_params;
{‘p’: 3, ‘lambda’: 1e-05};
batches_count: 18







Note

WN18RR validation and test sets include triples with entities that do not occur
in the training set. We found 198 unseen entities in the validation set and 209 in the test set.
In the experiments we excluded the triples where such entities appear (210 triples in from the validation
set and 210 from the test set).





YAGO3-10












	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	1210

	0.50

	0.41

	0.56

	0.67

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 0.0001;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
embedding_model_params:
norm: 1;
seed: 0;
batches_count: 100;



	DistMult

	2301

	0.48

	0.39

	0.53

	0.64

	k: 350;
epochs: 4000;
eta: 50;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 5e-05;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
seed: 0;
batches_count: 100;



	ComplEx

	3153

	0.49

	0.40

	0.54

	0.65

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 5e-05;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
seed: 0;
batches_count: 100



	HolE

	6941

	0.47

	0.39

	0.52

	0.62

	k: 350;
epochs: 4000;
eta: 30;
loss: self_adversarial;
loss_params:
alpha: 1;
margin: 0.5;
optimizer: adam;
optimizer_params:
lr: 0.0001;
seed: 0;
batches_count: 100



	RotatE

	1318

	0.43

	0.33

	0.48

	0.63

	k: 350;
epochs: 2850;
eta: 30;
loss: multiclass_nll;
loss_params:
{alpha: 1, margin: 1};
optimizer: adam;
lr: 0.0001;
regularizer: LP;
regularizer_params:
{‘p’: 3, ‘lambda’: 0.0};
seed: 0;
batches_count: 110







Note

YAGO3-10 validation and test sets include triples with entities that do not occur
in the training set. We found 22 unseen entities in the validation set and 18 in the test set.
In the experiments we excluded the triples where such entities appear (22 triples in from the validation
set and 18 from the test set).





FB15K


Warning

The dataset includes a large number of inverse relations, and its use in experiments has been deprecated.
Use FB15k-237 instead.














	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	45

	0.62

	0.48

	0.72

	0.84

	k: 150;
epochs: 4000;
eta: 10;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 5e-5;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
embedding_model_params:
norm: 1;
seed: 0;
batches_count: 100;



	DistMult

	227

	0.71

	0.66

	0.75

	0.80

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 50;



	ComplEx

	199

	0.73

	0.68

	0.77

	0.82

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
seed: 0;
batches_count: 100;



	HolE

	238

	0.73

	0.67

	0.77

	0.82

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 20;



	RotatE

	222

	0.70

	0.59

	0.80

	0.88

	k: 200;
batch_size: 97,
epochs: 1425,
eta: 20,
loss: self_adversarial,
loss_params:
{‘margin’: 5, ‘alpha’: 1.0},
regularizer_params:
{‘p’: 3, ‘lambda’: 0.001},
optimizer: adam,
learning_rate: 1e-05








WN18


Warning

The dataset includes a large number of inverse relations, and its use in experiments has been deprecated.
Use WN18RR instead.














	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	278

	0.66

	0.42

	0.88

	0.95

	k: 150;
epochs: 4000;
eta: 10;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 5e-5;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
embedding_model_params:
norm: 1;
seed: 0;
batches_count: 100;



	DistMult

	699

	0.82

	0.71

	0.92

	0.95

	k: 200;
epochs: 4000;
eta: 20;
loss: nll;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 50;



	ComplEx

	713

	0.94

	0.93

	0.95

	0.95

	k: 200;
epochs: 4000;
eta: 20;
loss: nll;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 20;



	HolE

	676

	0.94

	0.93

	0.94

	0.95

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 50;



	RotatE

	222

	0.95

	0.94

	0.96

	0.97

	k: 200;
epochs: 1425;
k: 200;
eta: 20;
loss: self_adversarial
loss_params:
{‘margin’: 5, ‘alpha’: 1.0};
optimizer: ‘adam’;
learning_rate: 1e-05;
regularizer: LP;
regularizer_params:
{‘p’: 3, ‘lambda’: 0.001};
batches_count: 29






To reproduce the above results:

$ cd experiments
$ python predictive_performance.py






Note

Running predictive_performance.py on all datasets, for all models takes ~34 hours on
an an Intel Xeon Gold 6226R, 256 GB, equipped with Tesla A100 40GB GPUs and  Ubuntu 20.04.




Note

All of the experiments above were conducted with early stopping on half the validation set.
Typically, the validation set can be found in X['valid'].
We only used half the validation set so the other half is available for hyperparameter tuning.

The exact early stopping configuration is as follows:



	x_valid: validation[::2]


	criteria: mrr


	x_filter: train + validation + test


	stop_interval: 4


	burn_in: 0


	check_interval: 50







Note that early stopping can save a lot of training time, but it also adds some computational cost to the
learning procedure. To lessen it, you may either decrease the validation set, the stop interval, the check interval,
or increase the burn in.



Experiments can be limited to specific models-dataset combinations as follows:

$ python predictive_performance.py -h
usage: predictive_performance.py [-h] [-d {fb15k,fb15k-237,wn18,wn18rr,yago310}]
                                 [-m {complex,transe,distmult,hole,rotate}]

optional arguments:
  -h, --help            show this help message and exit
  -d {fb15k,fb15k-237,wn18,wn18rr,yago310}, --dataset {fb15k,fb15k-237,wn18,wn18rr,yago310}
  -m {complex,transe,distmult,hole,rotate}, --model {complex,transe,distmult,hole,rotate}







Loading Pre-Trained Models

If you want to load the pre-trained models used to obtain the above performance, have a look at
load_pretrained_model().



Runtime Performance

Training the models on FB15K-237 (k=100, eta=10, batches_count=10, loss=multiclass_nll), on an Intel Xeon
Gold 6226R, 256 GB, equipped with Tesla A100 40GB GPUs and Ubuntu 20.04 gives the following runtime report:







	model

	seconds/epoch





	ComplEx

	0.18



	RotatE

	0.19



	TransE

	0.09



	DistMult

	0.10



	HolE

	0.18
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Changelog


2.1.0

28 February 2024


	Addition of RotatE to the available scoring functions.


	Addition of a module to load models (TransE, DistMult, ComplEx, RotatE, HolE) pre-trained on benchmark datasets (fb15k-237,
wn18rr, yago3-10, fb15k, wn18).


	Improved efficiency of the validation.


	Other minor efficiency improvements, fixes and code clean-up.






2.0.1

12 July 2023


	Fixed bug preventing the saving of calibrated models.


	Extended type support for the predict method to list of triples.


	Updated experiments performance.


	Minor fixes.






2.0.0

7 March 2023


	Switched to TensorFlow 2 back-end.


	Keras style APIs.


	Unique model class ScoringBasedEmbeddingModel for all scoring functions that can be specified as a parameter when initializing the class.


	Change of the data input/output pipeline.


	Extension of supported optimizers, regularizers and initializer.


	Different data storage support: no-backend (in memory) and SQLite-based backend.


	Codex-M Knowledge Graph included in the APIs for automatic download.


	ConvKB, ConvE, ConvE(1-N) not supported anymore as they are computationally expensive and thus not commonly used.


	Support AmpliGraph 1.4 API within ampligraph.compat module.






1.4.0

26 May 2021


	Added support for numerical attributes on edges (FocusE) (#235)


	Added loaders for benchmark datasets with numeric values on edges (O*NET20K, PPI5K, NL27K, CN15K)


	Added discovery API to find nearest neighbors in embedding space (#240)


	Change of optimizer (from BFSG to Adam) to calibrate models with ground truth negatives (#239)


	10x speed improvement on train_test_split_unseen API (#242)


	Added support to visualize training progression via tensorboard (#230)


	Bug fix in large graph mode (when evaluate_performance with entities_subset is used) (#231)


	Updated save model api to save embedding matrix > 6GB (#233)


	Doc updates (#247, #221)


	Fixed ntriples loader spurious trailing dot.


	Add tensorboard_logs_path to model.fit() for tracking training loss and early stopping criteria.






1.3.2

25 Aug 2020


	Added constant initializer (#205)


	Ranking strategies for breaking ties (#212)


	ConvE Bug Fixes (#210, #194)


	Efficient batch sampling (#202)


	Added pointer to documentation for large graph mode and Docs for Optimizer (#216)






1.3.1

18 Mar 2020


	Minor bug fix in ConvE (#189)






1.3.0

9 Mar 2020


	ConvE model Implementation (#178)


	Changes to evaluate_performance API (#183)


	Option to add reciprocal relations (#181)


	Minor fixes to ConvKB (#168, #167)


	Minor fixes in large graph mode (#174, #172, #169)


	Option to skip unseen entities checks when train_test_split is used (#163)


	Stability of NLL losses (#170)


	ICLR-20 calibration paper experiments added in branch paper/ICLR-20






1.2.0

22 Oct 2019


	Probability calibration using Platt scaling, both with provided negatives or synthetic negative statements (#131)


	Added ConvKB model


	Added WN11, FB13 loaders (datasets with ground truth positive and negative triples) (#138)


	Continuous integration with CircleCI, integrated on GitHub (#127)


	Refactoring of models into separate files (#104)


	Fixed bug where the number of epochs did not exactly match the provided number by the user (#135)


	Fixed some bugs on RandomBaseline model (#133, #134)


	Fixed some bugs on discover_facts with strategies “exhaustive” and “graph_degree”


	Fixed bug on subsequent calls of model.predict on the GPU (#137)






1.1.0

16 Aug 2019


	Support for large number of entities (#61, #113)


	Faster evaluation protocol (#74)


	New Knowledge discovery APIs: discover facts, clustering, near-duplicates detection, topn query (#118)


	API change: model.predict() does not return ranks anymore


	API change: friendlier ranking API output (#101)


	Implemented nuclear-3 norm (#23)


	Jupyter notebook tutorials: AmpliGraph basics (#67) and Link-based clustering


	Random search for hyper-parameter tuning (#106)


	Additional initializers (#112)


	Experiment campaign with multiclass-loss


	System-wide bugfixes and minor improvements






1.0.3

7 Jun 2019


	Fixed regression in RandomBaseline (#94)


	Added TensorBoard Embedding Projector support (#86)


	Minor bugfixing (#87, #47)






1.0.2

19 Apr 2019


	Added multiclass loss (#24 and #22)


	Updated the negative generation to speed up evaluation for default protocol.(#74)


	Support for visualization of embeddings using Tensorboard (#16)


	Save models with custom names. (#71)


	Quick fix for the overflow issue for datasets with a million entities. (#61)


	Fixed issues in train_test_split_no_unseen API and updated api (#68)


	Added unit test cases for better coverage of the code(#75)


	Corrupt_sides : can now generate corruptions for training on both sides, or only on subject or object


	Better error messages


	Reduced logging verbosity


	Added YAGO3-10 experiments


	Added MD5 checksum for datasets (#47)


	Addressed issue of ambiguous dataset loaders (#59)


	Renamed ‘type’ parameter in models.get_embeddings  to fix masking built-in function


	Updated String comparison to use equality instead of identity.


	Moved save_model and restore_model to ampligraph.utils (but existing API will remain for several releases).


	Other minor issues (#63, #64, #65, #66)






1.0.1

22 Mar 2019


	evaluation protocol now ranks object and subjects corruptions separately


	Corruption generation can now use entities from current batch only


	FB15k-237, WN18RR loaders filter out unseen triples by default


	Removed some unused arguments


	Improved documentation


	Minor bugfixing






1.0.0

16 Mar 2019


	TransE


	DistMult


	ComplEx


	FB15k, WN18, FB15k-237, WN18RR, YAGO3-10 loaders


	generic loader for csv files


	RDF, ntriples loaders


	Learning to rank evaluation protocol


	Tensorflow-based negatives generation


	save/restore capabilities for models


	pairwise loss


	nll loss


	self-adversarial loss


	absolute margin loss


	Model selection routine


	LCWA corruption strategy for training and eval


	rank, Hits@N, MRR scores functions








            

          

      

      

    

  

    
      
          
            
  
About

AmpliGraph is developed and maintained by Accenture Labs Dublin [https://www.accenture.com/us-en/accenture-technology-labs-index].


Contact us

You can contact us by email at about@ampligraph.org.

Join the conversation on Slack [https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg]
[image: ]



How to Cite

If you like AmpliGraph and you use it in your project, why not starring the project on GitHub!

[image: ] [https://GitHub.com/Accenture/AmpliGraph/stargazers/]

If you instead use AmpliGraph in an academic publication, cite as:

@misc{ampligraph,
 author= {Luca Costabello and
          Alberto Bernardi and
          Adrianna Janik and
          Aldan Creo and
          Sumit Pai and
          Chan Le Van and
          Rory McGrath and
          Nicholas McCarthy and
          Pedro Tabacof},
 title = {{AmpliGraph: a Library for Representation Learning on Knowledge Graphs}},
 month = mar,
 year  = 2019,
 doi   = {10.5281/zenodo.2595043},
 url   = {https://doi.org/10.5281/zenodo.2595043}
}





[image: ] [https://doi.org/10.5281/zenodo.2595043]



Contributors

Active contributors (in alphabetical order)


	Alberto Bernardi [http://github.com/albernar]


	Luca Costabello [http://github.com/lukostaz]


	Aldan Creo [http://github.com/acmcmc]


	Adrianna Janik [https://github.com/adrijanik]




Past contributors


	Nicholas McCarthy [http://github.com/NicholasMcCarthy]


	Rory McGrath [http://github.com/rorymcgrath]


	Chan Le Van [http://github.com/chanlevan]


	Sumit Pai [http://github.com/sumitpai]


	Pedro Tabacof [http://github.com/tabacof]






License

AmpliGraph is licensed under the Apache 2.0 License.
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Advanced Topics

Support for loading and managing datasets.

This section is meant as a brief introduction to AmpliGraph’s data pipeline. Advanced users may use it as a starting
point to understand how to train their models on custom datasets which are extremely large and do not fit either on CPU
or GPU memory.

The first element of AmpliGraph’s data pipeline is a data handler, that leverages the
GraphDataLoader class to load large datasets. This data loader takes data from a source
and stores it in a certain backend. If, when initializing the GraphDataLoader, we specify as
argument backend=NoBackend (default), we opt for storing data in memory, i.e., we are not using any backend.
If, on the other hand, we set backend=SQLiteAdapter, then we initialize a backend that relies on
SQLite [https://www.sqlite.org/index.html]. In this case, data is persisted on disk and is later loaded in memory in
chunks, so to avoid overloading the RAM. This is the option to choose for handling massive datasets.

The instantiation of a backend is not by itself sufficient. Indeed, it is capital to specify how the chunks
we load in memory are defined. This is equivalent to tackle the problem of graph partitioning.
Partitioning a graph amounts to split its nodes into \(P\) partitions sized to fit in memory.
When loading the data, partitions are created and singularly persisted on disk. Then, during training, single partitions
are loaded in memory and the model is trained on it. Once the model finishes operating on one partition, it unloads it
and loads the next one.

There are many possible strategies to partition a graph, but in AmpliGraph we recommend to use the default
option, the BucketGraphPartitioner strategy, as its runtime performance are much better than
the others baselines.

For more details about the data pipeline components see the API below:







	GraphDataLoader(data_source[, batch_size, ...])

	Data loader for models to ingest graph data.



	BucketGraphPartitioner(data[, k])

	Bucket-based partition strategy.









            

          

      

      

    

  

    
      
          
            
  
Anatomy of a Model

This module includes neural graph embedding models and support functions.

Knowledge graph embedding models are neural architectures that encode concepts
from a knowledge graph (i.e., entities \(\mathcal{E}\) and relation types
\(\mathcal{R}\)) into low-dimensional, continuous vectors \(\in
\mathcal{R}^k\). Such knowledge graph embeddings have applications in
knowledge graph completion, entity resolution, and link-based clustering,
just to cite a few [].




            

          

      

      

    

  

    
      
          
            
  
ComplEx


	
class ampligraph.compat.ComplEx(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform': False}, verbose=False, model=None)

	Class wrapping around the ScoringBasedEmbeddingModel with the ComplEx
scoring function.

Attributes







	name

	






Methods







	__init__([k, eta, epochs, batches_count, ...])

	Initialize the ScoringBasedEmbeddingModel with the ComplEx scoring function.







	
__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform': False}, verbose=False, model=None)

	Initialize the ScoringBasedEmbeddingModel with the ComplEx
scoring function.












            

          

      

      

    

  

    
      
          
            
  
DistMult


	
class ampligraph.compat.DistMult(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform': False}, verbose=False, model=None)

	Class wrapping around the ScoringBasedEmbeddingModel with the DistMult
scoring function.

Attributes







	name

	






Methods







	__init__([k, eta, epochs, batches_count, ...])

	Initialize the ScoringBasedEmbeddingModel with the DistMult scoring function.







	
__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform': False}, verbose=False, model=None)

	Initialize the ScoringBasedEmbeddingModel with the DistMult
scoring function.












            

          

      

      

    

  

    
      
          
            
  
HolE


	
class ampligraph.compat.HolE(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform': False}, verbose=False, model=None)

	Class wrapping around the ScoringBasedEmbeddingModel with the HolE
scoring function.

Attributes







	name

	






Methods







	__init__([k, eta, epochs, batches_count, ...])

	Initialize the ScoringBasedEmbeddingModel with the HolE scoring function.







	
__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform': False}, verbose=False, model=None)

	Initialize the ScoringBasedEmbeddingModel with the HolE
scoring function.












            

          

      

      

    

  

    
      
          
            
  
TransE


	
class ampligraph.compat.TransE(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform': False}, verbose=False, model=None)

	Class wrapping around the ScoringBasedEmbeddingModel with the TransE
scoring function.

Attributes







	name

	






Methods







	__init__([k, eta, epochs, batches_count, ...])

	Initialize the ScoringBasedEmbeddingModel with the TransE scoring function.







	
__init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={'corrupt_sides': ['s,o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, initializer='xavier', initializer_params={'uniform': False}, verbose=False, model=None)

	Initialize the ScoringBasedEmbeddingModel with the TransE
scoring function.












            

          

      

      

    

  

    
      
          
            
  
evaluate_performance


	
ampligraph.compat.evaluate_performance(X, model, filter_triples=None, verbose=False, entities_subset=None, corrupt_side='s,o', batch_size=1)

	Evaluate the performance of an embedding model.

The evaluation protocol follows the procedure defined in [BUGD+13] and can be summarised as:


	Artificially generate negative triples by corrupting first the subject and then the object.


	Remove the positive triples from the set returned by (1) – positive triples     are usually the concatenation of training, validation and test sets.


	Rank each test triple against all remaining triples returned by (2).




With the ranks of both object and subject corruptions, one may compute metrics such as the MRR by
calculating them separately and then averaging them out.
Note that the metrics implemented in AmpliGraph’s evaluate.metrics module will already work that way
when provided with the input returned by evaluate_performance.

The artificially generated negatives are compliant with the local closed world assumption (LCWA),
as described in []. In practice, that means only one side of the triple is
corrupted at a time (i.e. either the subject or the object).


Note

The evaluation protocol assigns the worst rank to a positive test triple in case of a tie with negatives.
This is the agreed upon behaviour in the literature.




Hint

When entities_subset=None, the method will use all distinct entities in the knowledge graph X
to generate negatives to rank against. This might slow down the evaluation process.
Some corruptions may not even make sense for the task that one may be interested in.

For instance, consider the case <Actor, acted_in, ?>, where we are mainly interested in those movies that
an actor has acted in. A sensible way to evaluate this would be to rank against all the movie entities and
compute the desired metrics. In such cases, where to focus on some entities, it is recommended to pass the
desired entities to use to generate corruptions to entities_subset. Besides, trying to rank a positive
against an extremely large number of negatives may be overkilling.

As a reference, the popular FB15k-237 dataset has ~15k distinct entities. The evaluation protocol ranks each
positive against 15k corruptions per side.




	Parameters

	
	X (ndarray, shape (n, 3)) – An array of test triples.


	model (EmbeddingModel) – A knowledge graph embedding model.


	filter_triples (ndarray, shape (n, 3), or None) – The triples used to filter negatives.


Note

When filtered mode is enabled (i.e., filtered_triples is not None), to speed up the procedure,
we use a database based filtering. This strategy is as described below:


	Store the filter_triples in the DB.


	For each test triple, we generate corruptions for evaluation and score them.


	The corruptions may contain some False Negatives. We find such statements by quering the database.


	From the computed scores we retrieve the scores of the False Negatives.


	We compute the rank of the test triple by comparing against ALL the corruptions.


	We then compute the number of False Negatives that are ranked higher than the test triple; and then
subtract this value from the above computed rank to yield the final filtered rank.




Execution Time: This method takes ~4 minutes on FB15K using ComplEx
(Intel Xeon Gold 6142, 64 GB Ubuntu 16.04 box, Tesla V100 16GB).






	verbose (bool) – Verbose mode.


	filter_unseen (bool) – This can be set to False to skip filtering of unseen entities if train_test_split_unseen() was used to
split the original dataset.


	entities_subset (array-like) – List of entities to use for corruptions. If None, will generate corruptions
using all distinct entities (default: None).


	corrupt_side (str) – Specifies which side of the triple to corrupt:


	’s’: corrupt only subject.


	’o’: corrupt only object.


	’s+o’: corrupt both subject and object.


	’s,o’: corrupt subject and object sides independently and return 2 ranks. This corresponds to the         evaluation protocol used in literature, where head and tail corruptions are evaluated separately.





Note

When corrupt_side='s,o' the function will return \(2*n\) ranks as a (n, 2) array.
The first column of the array represents the subject corruptions.
The second column of the array represents the object corruptions.
Otherwise, the function returns \(n\) ranks as (n) array.






	batch_size (int) – Batch size to use for evaluation.






	Returns

	ranks – An array of ranks of test triples.
When corrupt_side='s,o' the function returns (n,2). The first column represents the rank against
subject corruptions and the second column represents the rank against object corruptions.
In other cases, it returns (n), i.e., rank against the specified corruptions.



	Return type

	ndarray, shape (n) or (n,2)





Example

>>> import numpy as np
>>> from ampligraph.datasets import load_wn18
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.evaluation import mrr_score, hits_at_n_score
>>>
>>> X = load_wn18()
>>> model = ScoringBasedEmbeddingModel(k=150, eta=1, scoring_type='ComplEx')
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(X['train'],
>>>           batch_size=int(X['train'].shape[0] / 10),
>>>           epochs=10)
>>> filter_triples = {'test': np.concatenate([X['train'], X['valid'], X['test']], axis=0)}
>>> ranks = model.evaluate(X['test'][:5],
>>>                        use_filter=filter_triples,
>>>                        corrupt_side='s+o')
>>> print(ranks)
[[  1]
 [116]
 [  1]
 [  1]
 [214]]
>>> print(mrr_score(ranks))
0.6026587173702869
>>> print(hits_at_n_score(ranks, n=10))
0.6












            

          

      

      

    

  

    
      
          
            
  
BucketGraphPartitioner


	
class ampligraph.datasets.BucketGraphPartitioner(data, k=2, **kwargs)

	Bucket-based partition strategy.

This strategy first splits entities into \(k\) buckets and creates:


	k partitions where the i-th includes triples such that subject and object belong to the i-th partition.


	\(\frac{(k^2-k)}{2}\) partitions indexed by \((i,j)\) with \(i,j=1,...,k\), \(i \neq j\) where
the  \((i,j)\)-th partition contains triples such that the subject belongs to the \(i\)-th partition
and the object to the \(j\)-th partition or viceversa.




Example

>>> from ampligraph.datasets import load_fb15k_237, GraphDataLoader, BucketGraphPartitioner
>>> from ampligraph.datasets.sqlite_adapter import SQLiteAdapter
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> dataset = load_fb15k_237()
>>> dataset_loader = GraphDataLoader(dataset['train'],
>>>                                  backend=SQLiteAdapter, # Type of backend to use
>>>                                  batch_size=1000,       # Batch size to use while iterating over the dataset
>>>                                  dataset_type='train',  # Dataset type
>>>                                  use_filter=False,      # Whether to use filter or not
>>>                                  use_indexer=True)      # indicates that the data needs to be mapped to index
>>> partitioner = BucketGraphPartitioner(dataset_loader, k=2)
>>> # create and compile a model as usual
>>> partitioned_model = ScoringBasedEmbeddingModel(eta=2, k=50, scoring_type='DistMult')
>>> partitioned_model.compile(optimizer='adam', loss='multiclass_nll')
>>> partitioned_model.fit(partitioner,       # The partitioner object generate data for the model during training
>>>                       epochs=10)         # Number of epochs





Example

>>> import numpy as np
>>> from ampligraph.datasets import GraphDataLoader, BucketGraphPartitioner
>>> d = np.array([[1,1,2], [1,1,3],[1,1,4],[5,1,3],[5,1,2],[6,1,3],[6,1,2],[6,1,4],[6,1,7]])
>>> data = GraphDataLoader(d, batch_size=1, dataset_type="test")
>>> partitioner = BucketGraphPartitioner(data, k=2)
>>> for i, partition in enumerate(partitioner):
>>>    print("partition ", i)
>>>    for batch in partition:
>>>        print(batch)
partition  0
[['0,0,1']]
[['0,0,2']]
[['0,0,3']]
partition  1
[['4,0,1']]
[['4,0,2']]
[['5,0,1']]
[['5,0,2']]
[['5,0,3']]
partition  2
[['5,0,6']]





Attributes







	manager

	



	name

	






Methods







	__init__(data[, k])

	Initialise the BucketGraphPartitioner.



	create_single_partition(ind1, ind2, ...[, ...])

	Creates partition based on the two given indices of buckets.







	
__init__(data, k=2, **kwargs)

	Initialise the BucketGraphPartitioner.


	Parameters

	
	data (GraphDataLoader) – Input data as a GraphDataLoader.


	k (int) – Number of buckets to split entities (i.e., vertices) into.













	
create_single_partition(ind1, ind2, timestamp, partition_nb, batch_size=1)

	Creates partition based on the two given indices of buckets.

It appends created partition to the list of partitions (self.partitions).


	Parameters

	
	ind1 (int) – Index of the first bucket needed to create partition.


	ind2 (int) – Index of the second bucket needed to create partition.


	timestamp (str) – Date and time string that the files are created with (shelves).


	partition_nb (int) – Assigned number of partitions.



















            

          

      

      

    

  

    
      
          
            
  
GraphDataLoader


	
class ampligraph.datasets.GraphDataLoader(data_source, batch_size=1, dataset_type='train', backend=None, root_directory=None, use_indexer=True, verbose=False, remap=False, name='main_partition', parent=None, in_memory=False, use_filter=False)

	Data loader for models to ingest graph data.

This class is internally used by the model to store the data passed by the user and batch over it during
training and evaluation, and to obtain filters during evaluation.

It can be used by advanced users to load custom datasets which are large, for performing partitioned training.
The complete dataset will not get loaded in memory. It will load the data in chunks based on which partition
is being trained.

Example

>>> from ampligraph.datasets import GraphDataLoader, BucketGraphPartitioner
>>> from ampligraph.datasets.sqlite_adapter import SQLiteAdapter
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> AMPLIGRAPH_DATA_HOME='/your/path/to/datasets/'
>>> # Graph loader - loads the data from the file, numpy array, etc and generates batches for iterating
>>> path_to_training = AMPLIGRAPH_DATA_HOME + 'fb15k-237/train.txt'
>>> dataset_loader = GraphDataLoader(path_to_training,
>>>                                  backend=SQLiteAdapter, # type of backend to use
>>>                                  batch_size=1000,       # batch size to use while iterating over this dataset
>>>                                  dataset_type='train',  # dataset type
>>>                                  use_filter=False,      # Whether to use filter or not
>>>                                  use_indexer=True)      # indicates that the data needs to be mapped to index
>>>
>>> # Choose the partitioner - in this case we choose RandomEdges partitioner
>>> partitioner = BucketGraphPartitioner(dataset_loader, k=3)
>>> partitioned_model = ScoringBasedEmbeddingModel(eta=2,
>>>                                                k=50,
>>>                                                scoring_type='DistMult')
>>> partitioned_model.compile(optimizer='adam', loss='multiclass_nll')
>>> partitioned_model.fit(partitioner,            # pass the partitioner object as input to the fit function this will generate data for the model during training
>>>                       epochs=10)              # number of epochs
>>> indexer = partitioned_model.data_handler.get_mapper()    # get the mapper from the trained model
>>> path_to_test = AMPLIGRAPH_DATA_HOME + 'fb15k-237/test.txt'
>>> dataset_loader_test = GraphDataLoader(path_to_test,
>>>                                       backend=SQLiteAdapter,                         # type of backend to use
>>>                                       batch_size=400,                                # batch size to use while iterating over this dataset
>>>                                       dataset_type='test',                           # dataset type
>>>                                       use_indexer=indexer                            # mapper to map test concepts to the same indices used during training
>>>                                       )
>>> ranks = partitioned_model.evaluate(dataset_loader_test, # pass the dataloader object to generate data for the model during training
>>>                                    batch_size=400)
>>> print(ranks)
[[  85    7]
 [  95    9]
 [1074   22]
 ...
 [ 546   95]
 [9961 7485]
 [1494    2]]





Attributes







	max_entities

	Maximum number of entities present in the dataset mapper.



	max_relations

	Maximum number of relations present in the dataset mapper.






Methods







	__init__(data_source[, batch_size, ...])

	Initialise persistent/in-memory data storage.



	add_dataset(data_source, dataset_type)

	Adds the dataset to the backend (if possible).



	clean()

	Cleans up the temporary files created for training/evaluation.



	get_batch_generator([dataset_type, use_filter])

	Get batch generator from the backend.



	get_complementary_entities(triples[, use_filter])

	Get subjects and objects complementary to triples (?,p,?).



	get_complementary_objects(triples[, use_filter])

	Get objects complementary to  triples (s,p,?).



	get_complementary_subjects(triples[, use_filter])

	Get subjects complementary to triples (?,p,o).



	get_data_size()

	Returns number of triples.



	get_participating_entities(triples[, sides, ...])

	Get entities from triples with fixed subjects or fixed objects or both fixed.



	get_tf_generator()

	Generates a tensorflow.data.Dataset object.



	get_triples([subjects, objects, entities])

	Get triples that subject is in subjects and object is in objects, or triples that eiter subject or object is in entities.



	intersect(dataloader)

	Returns the intersection between the current data loader and another one specified in dataloader.



	on_complete()

	



	on_epoch_end()

	



	reload([use_filter, dataset_type])

	Reinstantiate batch iterator.







	
__init__(data_source, batch_size=1, dataset_type='train', backend=None, root_directory=None, use_indexer=True, verbose=False, remap=False, name='main_partition', parent=None, in_memory=False, use_filter=False)

	Initialise persistent/in-memory data storage.


	Parameters

	
	data_source (str or np.array or GraphDataLoader or AbstractGraphPartitioner) – File with data (e.g. CSV). Can be a path pointing to the file location, can be data loaded as numpy, a
GraphDataLoader or an AbstractGraphPartitioner instance.


	batch_size (int) – Size of batch.


	dataset_type (str) – Kind of data provided (“train” | “test” | “valid”).


	backend (str) – Name of backend class (NoBackend, SQLiteAdapter) or already initialised backend.
If None, NoBackend is used (in-memory processing).


	root_directory (str) – Path to a directory where the database will be created, and the data and mappings will be stored.
If None, the root directory is obtained through the tempfile.gettempdir() method
(default: None).


	use_indexer (bool or DataIndexer) – Flag to tell whether data should be indexed.
If the DataIndexer object is passed, the mappings defined in the indexer will be reused
to generate mappings for the current data.


	verbose (bool) – Verbosity.


	remap (bool) – Flag to be used by graph partitioner, indicates whether previously indexed data in partition has to
be remapped to new indexes (0, <size_of_partition>). It has not to be used with use_indexer=True.
The new remappings will be persisted.


	name (str) – Name of the partition. This is internally used when the data is partitioned.


	parent (GraphDataLoader) – Parent dataloader. This is internally used when the data is partitioned.


	in_memory (bool) – Persist indexes or not.


	use_filter (bool or dict) – If True, current dataset will be used as filter.
If dict, the datasets specified in the dict will be used for filtering.
If False, the true positives will not be filtered from corruptions.













	
add_dataset(data_source, dataset_type)

	Adds the dataset to the backend (if possible).






	
clean()

	Cleans up the temporary files created for training/evaluation.






	
get_batch_generator(dataset_type='train', use_filter=False)

	Get batch generator from the backend.


	Parameters

	dataset_type (str) – Specifies whether data are generated for “train”, “valid” or “test” set.










	
get_complementary_entities(triples, use_filter=False)

	Get subjects and objects complementary to triples (?,p,?).

Returns the participating entities in the relation ?-p-o and s-p-?.


	Parameters

	x_triple (nd-array (N,3,)) – N triples (s-p-o) that we are querying.



	Returns

	entities –  Tuple containing two lists, one with the subjects and one of with the objects participating in the
relations ?-p-o and s-p-?.



	Return type

	tuple










	
get_complementary_objects(triples, use_filter=False)

	Get objects complementary to  triples (s,p,?).

For a given triple retrieve all triples with same subjects and predicates.
Function used during evaluation.


	Parameters

	triples (list or array) – List or array of arrays with 3 elements (subject, predicate, object).



	Returns

	subjects – Objects present in the input triples.



	Return type

	list










	
get_complementary_subjects(triples, use_filter=False)

	Get subjects complementary to triples (?,p,o).

For a given triple retrieve all subjects coming from triples with same objects and predicates.


	Parameters

	triples (list or array) – List or array of arrays with 3 elements (subject, predicate, object).



	Returns

	subjects – Subjects present in the input triples.



	Return type

	list










	
get_data_size()

	Returns number of triples.






	
get_participating_entities(triples, sides='s,o', use_filter=False)

	Get entities from triples with fixed subjects or fixed objects or both fixed.


	Parameters

	
	triples (list or array) – List or array of arrays with 3 elements (subject, predicate, object).


	sides (str) – String specifying what entities to retrieve: “s” - subjects, “o” - objects,
“s,o” - subjects and objects, “o,s” - objects and subjects.






	Returns

	entities – List of subjects (if sides="s") or objects (if sides="o") or two lists with both
(if sides="s,o" or sides="o,s").



	Return type

	list










	
get_tf_generator()

	Generates a tensorflow.data.Dataset object.






	
get_triples(subjects=None, objects=None, entities=None)

	Get triples that subject is in subjects and object is in objects, or
triples that eiter subject or object is in entities.


	Parameters

	
	subjects (list) – List of entities that triples subject should belong to.


	objects (list) – List of entities that triples object should belong to.


	entities (list) – List of entities that triples subject and object should belong to.






	Returns

	triples – List of triples constrained by subjects and objects.



	Return type

	list










	
intersect(dataloader)

	Returns the intersection between the current data loader and another one specified in dataloader.


	Parameters

	dataloader (GraphDataLoader) – Dataloader for which to calculate the intersection for.



	Returns

	intersection – Array of intersecting elements.



	Return type

	ndarray










	
on_complete()

	




	
on_epoch_end()

	




	
reload(use_filter=False, dataset_type='train')

	Reinstantiate batch iterator.












            

          

      

      

    

  

    
      
          
            
  
load_cn15k


	
ampligraph.datasets.datasets.load_cn15k(check_md5hash=False, clean_unseen=True, split_test_into_top_bottom=True, split_threshold=0.1)

	Load the CN15K dataset.

CN15K was originally proposed in [], it is a subset of ConceptNet [],
a common-sense knowledge graph built to represent general human knowledge.
Numeric values on triples represent uncertainty.

CN15k dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

It is divided into three splits:


	train: 199,417 triples


	valid: 16,829 triples


	test: 19,224 triples




Each triple in these splits is associated to a numeric value which represents the importance/relevance of
the link.











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	CN15K

	199,417

	16,829

	19,224

	15,000

	36







	Parameters

	
	check_md5hash (bool) – If True, check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training
set.


	split_test_into_top_bottom (bool) – Splits the test set by numeric values and returns test_top_split and test_bottom_split by splitting based
on sorted numeric values and returning top and bottom k% triples, where k is specified by split_threshold
argument.


	split_threshold (float) – Specifies the top and bottom percentage of triples to return.






	Returns

	splits – The dataset splits: {‘train’: train,
‘valid’: valid,
‘test’: test,
‘test_topk’: test_topk,
‘test_bottomk’: test_bottomk,
‘train_numeric_values’: train_numeric_values,
‘valid_numeric_values’:valid_numeric_values,
‘test_numeric_values’: test_numeric_values,
‘test_topk_numeric_values’: test_topk_numeric_values,
‘test_bottomk_numeric_values’: test_bottomk_numeric_values}.
Each *_numeric_values split contains numeric values associated to the corresponding dataset split and
is a ndarray of shape (n).
Each dataset split is a ndarray of shape (n,3).
The *_topk and *_bottomk splits are only returned when split_test_into_top_bottom=True and contain
the triples ordered by highest/lowest numeric edge value associated. These are typically used at evaluation time
aiming at observing a model that assigns the highest rank possible to the _topk and the lowest possible to
the _bottomk.



	Return type

	dict





Example

>>> from ampligraph.datasets import load_cn15k
>>> X = load_cn15k()
>>> X["train"][0]
['260' '2' '13895']
>>> X['train_numeric_values'][0]
[0.8927088]












            

          

      

      

    

  

    
      
          
            
  
load_codex


	
ampligraph.datasets.datasets.load_codex(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False, return_mapper=False)

	Load the CoDEx-M dataset.

The dataset is described in [].


Note

CODEX-M contains also ground truths negative triples for test and validation sets. For more information, see
the above reference to the original paper.



The CodDEx dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 185,584 triples


	valid: 10,310 triples


	test: 10,310 triples




Both the validation and test splits are associated with labels (binary ndarrays),
with True for positive statements and False for  negatives:


	valid_labels


	test_labels
















	Dataset

	Train

	Valid

	Valid-negatives

	Test

	Test-negatives

	Entities

	Relations





	CoDEx-M

	185,584

	10,310

	10,310

	10311

	10311

	17,050

	51







	Parameters

	
	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	check_md5hash (bool) – If True, check the md5hash of the datset files (default: False).


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).


	return_mapper (bool) – Whether to return human-readable labels in a form of dictionary in X["mapper"] field (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘valid_negatives’: valid_negatives’, ‘test’: test, ‘test_negatives’: test_negatives}.
Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_codex
>>> X = load_codex()
>>> X["valid"][0]
array(['Q60684', 'P106', 'Q4964182'], dtype=object)
>>> X = load_codex(return_mapper=True)
>>> [X['mapper'][elem]['label'] for elem in X['valid'][0]]
['Novalis', 'occupation', 'philosopher']












            

          

      

      

    

  

    
      
          
            
  
load_fb13


	
ampligraph.datasets.datasets.load_fb13(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False)

	Load the Freebase13 (FB13) dataset.

FB13 is a subset of Freebase []
and was initially presented in
Reasoning With Neural Tensor Networks for Knowledge Base Completion [].


Note

FB13 also provide true and negative labels for the triples in the validation and tests sets.
The positive base rate is close to 50%.



FB13 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 316232 triples


	valid: 11816 triples


	test: 47464 triples




Both the validation and test splits are associated with labels (binary ndarrays),
with True for positive statements and False for  negatives:


	valid_labels


	test_labels
















	Dataset

	Train

	Valid Pos

	Valid Neg

	Test Pos

	Test Neg

	Entities

	Relations





	FB13

	316232

	5908

	5908

	23733

	23731

	75043

	13







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘valid_labels’: valid_labels,
‘test’: test, ‘test_labels’: test_labels}.
Each split containing a dataset is a ndarray of shape (n, 3).
The labels are ndarray of shape (n).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_fb13
>>> X = load_fb13()
>>> X["valid"][0]
array(['cornelie_van_zanten', 'gender', 'female'], dtype=object)
>>> X["valid_labels"][0:3]
array([True, False, True], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_fb15k


	
ampligraph.datasets.datasets.load_fb15k(check_md5hash=False, add_reciprocal_rels=False)

	Load the FB15k dataset.

FB15k is a split of Freebase, first proposed by [BUGD+13].


Warning

The dataset includes a large number of inverse relations that spilled to the test set, and its use in
experiments has been deprecated. Use FB15k-237 instead.



The FB15k dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

The dataset is divided in three splits:


	train: 483,142 triples


	valid: 50,000 triples


	test: 59,071 triples














	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	FB15K

	483,142

	50,000

	59,071

	14,951

	1,345







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_fb15k
>>> X = load_fb15k()
>>> X['test'][:3]
array([['/m/01qscs',
        '/award/award_nominee/award_nominations./award/award_nomination/award',
        '/m/02x8n1n'],
       ['/m/040db', '/base/activism/activist/area_of_activism', '/m/0148d'],
       ['/m/08966',
        '/travel/travel_destination/climate./travel/travel_destination_monthly_climate/month',
        '/m/05lf_']], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_fb15k_237


	
ampligraph.datasets.datasets.load_fb15k_237(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False, return_mapper=False)

	Load the FB15k-237 dataset (with option to load human labeled test subset).

FB15k-237 is a reduced version of FB15K. It was first proposed by [].


Warning

FB15K-237’s validation set contains 8 unseen entities over 9 triples. The test set has 29 unseen entities,
distributed over 28 triples.



The FB15k-237 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

The dataset is divided in three splits:


	train: 272,115 triples


	valid: 17,535 triples


	test: 20,466 triples




It also contains a subset of the test set with human-readable labels, available here:


	test-human


	test-human-ids















	Dataset

	Train

	Valid

	Test

	Test-Human

	Entities

	Relations





	FB15K-237

	272,115

	17,535

	20,466

	273

	14,541

	237







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).


	return_mapper (bool) – Whether to return human-readable labels in a form of dictionary in X["mapper"] field (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test, ‘test-human’:test_human, ‘test-human-ids’: test_human_ids}.
Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_fb15k_237
>>> X = load_fb15k_237()
>>> X["train"][2]
array(['/m/07s9rl0', '/media_common/netflix_genre/titles', '/m/0170z3'],
  dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_from_csv


	
ampligraph.datasets.datasets.load_from_csv(directory_path, file_name, sep='\t', header=None, add_reciprocal_rels=False)

	Load a knowledge graph from a .csv file.

Loads a knowledge graph serialized in a .csv file filtering duplicated statements. In the .csv file, each line
has to represent a triple, and entities and relations are separated by sep.
For instance, if sep="\t", the .csv file look like:

subj1    relationX   obj1
subj1    relationY   obj2
subj3    relationZ   obj2
subj4    relationY   obj2
           ...






Hint

To split a generic knowledge graphs into training, validation, and test sets do not use the above
function, but rather train_test_split_no_unseen(): this will return
validation and test sets not including triples with entities not present in the training set.




	Parameters

	
	directory_path (str) – Folder where the input file is stored.


	file_name (str) – File name.


	sep (str) – The subject-predicate-object separator (default: "\t").


	header (int or None) – The row of the header of the csv file. Same as pandas.read_csv header param.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	triples – The actual triples of the file.



	Return type

	ndarray, shape (n, 3)





Example

>>> PATH_TO_FOLDER = 'your/path/to/folder/'
>>> from ampligraph.datasets import load_from_csv
>>> X = load_from_csv(PATH_TO_FOLDER, 'dataset.csv', sep=',')
>>> X[:3]
array([['a', 'y', 'b'],
       ['b', 'y', 'a'],
       ['a', 'y', 'c']],
      dtype='<U1')












            

          

      

      

    

  

    
      
          
            
  
load_from_ntriples


	
ampligraph.datasets.datasets.load_from_ntriples(folder_name, file_name, data_home=None, add_reciprocal_rels=False)

	Load a dataset of RDF ntriples.

Loads an RDF knowledge graph serialized as ntriples, without building an RDF graph in memory.
This function should be preferred over load_from_rdf(), since it does not load the graph into an rdflib
model (and it is therefore faster by order of magnitudes).
Nevertheless, it requires a ntriples [https://www.w3.org/TR/n-triples/.] serialization as in the example below:

_:alice <http://xmlns.com/foaf/0.1/knows> _:bob .
_:bob <http://xmlns.com/foaf/0.1/knows> _:alice .






Hint

To split a generic knowledge graphs into training, validation, and test sets do not use the above
function, but rather train_test_split_no_unseen(): this will return
validation and test sets not including triples with entities not present in the training set.




	Parameters

	
	folder_name (str) – Base folder where the file is stored.


	file_name (str) – File name.


	data_home (str) – The path to the folder that contains the datasets.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	triples – The actual triples of the file.



	Return type

	ndarray, shape (n, 3)












            

          

      

      

    

  

    
      
          
            
  
load_from_rdf


	
ampligraph.datasets.datasets.load_from_rdf(folder_name, file_name, rdf_format='nt', data_home=None, add_reciprocal_rels=False)

	Load an RDF file.

Loads an RDF knowledge graph using rdflib [https://rdflib.readthedocs.io/] APIs.
Multiple RDF serialization formats are supported (nt, ttl, rdf/xml, etc).
The entire graph will be loaded in memory, and converted into an rdflib Graph object.


Warning

Large RDF graphs should be serialized to ntriples beforehand and loaded with load_from_ntriples() instead.
This function, indeed, is faster by orders of magnitude.




Hint

To split a generic knowledge graphs into training, validation, and test sets do not use the above
function, but rather train_test_split_no_unseen(): this will return
validation and test sets not including triples with entities not present in the training set.




	Parameters

	
	folder_name (str) – Base folder where the file is stored.


	file_name (str) – File name.


	rdf_format (str) – The RDF serialization format (nt, ttl, rdf/xml - see rdflib documentation).


	data_home (str) – The path to the folder that contains the datasets.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	triples – The actual triples of the file.



	Return type

	ndarray, shape (n, 3)












            

          

      

      

    

  

    
      
          
            
  
load_nl27k


	
ampligraph.datasets.datasets.load_nl27k(check_md5hash=False, clean_unseen=True, split_test_into_top_bottom=True, split_threshold=0.1)

	Load the NL27K dataset.

NL27K was originally proposed in []. It is a subset of the Never Ending Language
Learning (NELL) dataset [], which collects data from web pages.
Numeric values on triples represent link uncertainty.

NL27K is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

It is divided into three splits:


	train: 149,100 triples


	valid: 12,274 triples


	test: 14,026 triples




Each triple in these splits is associated to a numeric value which represents the importance/relevance of
the link.











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	NL27K

	149,100

	12,274

	14,026

	27,221

	405







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training
set.


	split_test_into_top_bottom (bool) – Splits the test set by numeric values and returns test_top_split and test_bottom_split by splitting based
on sorted numeric values and returning top and bottom k% triples, where k is specified by split_threshold
argument.


	split_threshold (float) – Specifies the top and bottom percentage of triples to return.






	Returns

	splits – The dataset splits: {‘train’: train,
‘valid’: valid,
‘test’: test,
‘test_topk’: test_topk,
‘test_bottomk’: test_bottomk,
‘train_numeric_values’: train_numeric_values,
‘valid_numeric_values’:valid_numeric_values,
‘test_numeric_values’: test_numeric_values,
‘test_topk_numeric_values’: test_topk_numeric_values,
‘test_bottomk_numeric_values’: test_bottomk_numeric_values}.
Each *_numeric_values split contains numeric values associated to the corresponding dataset split and
is a ndarray of shape (n).
Each dataset split is a ndarray of shape (n,3).
The *_topk and *_bottomk splits are only returned when split_test_into_top_bottom=True and contain
the triples ordered by highest/lowest numeric edge value associated. These are typically used at evaluation time
aiming at observing a model that assigns the highest rank possible to the _topk and the lowest possible to
the _bottomk.



	Return type

	dict





Example

>>> from ampligraph.datasets import load_nl27k
>>> X = load_nl27k()
>>> X["train"][0]
['concept:company:business_review' 'concept:competeswith' 'concept:company:miami_herald001']
>>> X['train_numeric_values'][0]
[0.859375]












            

          

      

      

    

  

    
      
          
            
  
load_onet20k


	
ampligraph.datasets.datasets.load_onet20k(check_md5hash=False, clean_unseen=True, split_test_into_top_bottom=True, split_threshold=0.1)

	Load the O*NET20K dataset.

O*NET20K was originally proposed in [PC21].
It is a subset  of O*NET [https://www.onetonline.org/], a dataset that includes job descriptions, skills
and labeled, binary relations between such concepts. Each triple is labeled with a numeric value that
indicates the importance of that link.

O*NET20K dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 461,932 triples


	valid: 850 triples


	test: 2,000 triples




Each triple in these splits is associated to a numeric value which represents the importance/relevance of
the link.











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	ONET*20K

	461,932

	850

	2,000

	20,643

	19







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training
set.


	split_test_into_top_bottom (bool) – Splits the test set by numeric values and returns test_top_split and test_bottom_split by splitting based
on sorted numeric values and returning top and bottom k% triples, where k is specified by split_threshold
argument.


	split_threshold (float) – Specifies the top and bottom percentage of triples to return.






	Returns

	splits – The dataset splits: {‘train’: train,
‘valid’: valid,
‘test’: test,
‘test_topk’: test_topk,
‘test_bottomk’: test_bottomk,
‘train_numeric_values’: train_numeric_values,
‘valid_numeric_values’:valid_numeric_values,
‘test_numeric_values’: test_numeric_values,
‘test_topk_numeric_values’: test_topk_numeric_values,
‘test_bottomk_numeric_values’: test_bottomk_numeric_values}.
Each *_numeric_values split contains numeric values associated to the corresponding dataset split and
is a ndarray of shape (n).
Each dataset split is a ndarray of shape (n,3).
The *_topk and *_bottomk splits are only returned when split_test_into_top_bottom=True and contain
the triples ordered by highest/lowest numeric edge value associated. These are typically used at evaluation time
aiming at observing a model that assigns the highest rank possible to the _topk and the lowest possible to
the _bottomk.



	Return type

	dict





Example

>>> from ampligraph.datasets import load_onet20k
>>> X = load_onet20k()
>>> X["train"][0]
['Job_27-1021.00' 'has_ability_LV' '1.A.1.b.2']
>>> X['train_numeric_values'][0]
[0.6257143]












            

          

      

      

    

  

    
      
          
            
  
load_ppi5k


	
ampligraph.datasets.datasets.load_ppi5k(check_md5hash=False, clean_unseen=True, split_test_into_top_bottom=True, split_threshold=0.1)

	Load the PPI5K dataset.

Originally proposed in [], PPI5K is a subset of the protein-protein
interactions (PPI) knowledge graph []. Numeric values represent the confidence of the link
based on existing scientific literature evidence.

PPI5K is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

It is divided into three splits:


	train: 230,929 triples


	valid: 19,017 triples


	test: 21,720 triples




Each triple in these splits is associated to a numeric value which models additional information on the
fact (importance, relevance of the link).











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	PPI5K

	230929

	19017

	21720

	4999

	7







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training
set.


	split_test_into_top_bottom (bool) – When set to True, the function also returns subsets of the test set that includes only the top-k or
bottom-k numeric-enriched triples. Splits test_topk, test_bottomk and their
numeric values. Such splits are generated by sorting Splits the test set by numeric values and returns
test_top_split and test_bottom_split by splitting based on sorted numeric values and returning top
and bottom k% triples, where k is specified by the split_threshold argument.


	split_threshold (float) – Specifies the top and bottom percentage of triples to return.






	Returns

	splits – The dataset splits: {‘train’: train,
‘valid’: valid,
‘test’: test,
‘test_topk’: test_topk,
‘test_bottomk’: test_bottomk,
‘train_numeric_values’: train_numeric_values,
‘valid_numeric_values’:valid_numeric_values,
‘test_numeric_values’: test_numeric_values,
‘test_topk_numeric_values’: test_topk_numeric_values,
‘test_bottomk_numeric_values’: test_bottomk_numeric_values}.
Each *_numeric_values split contains numeric values associated to the corresponding dataset split and
is a ndarray of shape (n).
Each dataset split is a ndarray of shape (n,3).
The *_topk and *_bottomk splits are only returned when split_test_into_top_bottom=True and contain
the triples ordered by highest/lowest numeric edge value associated. These are typically used at evaluation time
aiming at observing a model that assigns the highest rank possible to the _topk and the lowest possible to
the _bottomk.



	Return type

	dict





Example

>>> from ampligraph.datasets import load_ppi5k
>>> X = load_ppi5k()
>>> X["train"][0]
['4001' '5' '4176']
>>> X['train_numeric_values'][0]
[0.329]












            

          

      

      

    

  

    
      
          
            
  
load_wn11


	
ampligraph.datasets.datasets.load_wn11(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False)

	Load the WordNet11 (WN11) dataset.

WordNet was originally proposed in WordNet: a lexical database for English [].


Note

WN11 also provide true and negative labels for the triples in the validation and tests sets.
The positive base rate is close to 50%.



WN11 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 110361 triples


	valid: 5215 triples


	test: 21035 triples




Both the validation and test splits are associated with labels (binary ndarrays),
with True for positive statements and False for  negatives:


	valid_labels


	test_labels
















	Dataset

	Train

	Valid Pos

	Valid Neg

	Test Pos

	Test Neg

	Entities

	Relations





	WN11

	110361

	2606

	2609

	10493

	10542

	38588

	11







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘valid_labels’: valid_labels,
‘test’: test, ‘test_labels’: test_labels}.
Each split containing a dataset is a ndarray of shape (n, 3).
The labels are a ndarray of shape (n).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_wn11
>>> X = load_wn11()
>>> X["valid"][0]
array(['__genus_xylomelum_1', '_type_of', '__dicot_genus_1'], dtype=object)
>>> X["valid_labels"][0:3]
array([ True, False,  True])












            

          

      

      

    

  

    
      
          
            
  
load_wn18


	
ampligraph.datasets.datasets.load_wn18(check_md5hash=False, add_reciprocal_rels=False)

	Load the WN18 dataset.

WN18 is a subset of Wordnet. It was first presented by [BUGD+13].


Warning

The dataset includes a large number of inverse relations that spilled to the test set, and its use in
experiments has been deprecated. Use WN18RR instead.



The WN18 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

The dataset is divided in three splits:


	train: 141,442 triples


	valid 5,000 triples


	test 5,000 triples














	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	WN18

	141,442

	5,000

	5,000

	40,943

	18







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_wn18
>>> X = load_wn18()
>>> X['test'][:3]
array([['06845599', '_member_of_domain_usage', '03754979'],
       ['00789448', '_verb_group', '01062739'],
       ['10217831', '_hyponym', '10682169']], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_wn18rr


	
ampligraph.datasets.datasets.load_wn18rr(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False)

	Load the WN18RR dataset.

The dataset is described in [DMSR18].



Warning

WN18RR’s validation set contains 198 unseen entities over 210 triples. The test set
has 209 unseen entities, distributed over 210 triples.






The WN18RR dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location, it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 86,835 triples


	valid: 3,034 triples


	test: 3,134 triples














	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	WN18RR

	86,835

	3,034

	3,134

	40,943

	11







	Parameters

	
	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	check_md5hash (bool) – If True check the md5hash of the datset files (default: False).


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default: False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_wn18rr
>>> X = load_wn18rr()
>>> X["valid"][0]
array(['02174461', '_hypernym', '02176268'], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
load_yago3_10


	
ampligraph.datasets.datasets.load_yago3_10(check_md5hash=False, clean_unseen=True, add_reciprocal_rels=False)

	Load the YAGO3-10 dataset.

The dataset is a split of YAGO3 [],
and has been first presented in [DMSR18].

The YAGO3-10 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location.
If AMPLIGRAPH_DATA_HOME is not set, the default  ~/ampligraph_datasets is checked.
If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME
or ~/ampligraph_datasets.

This dataset is divided in three splits:


	train: 1,079,040 triples


	valid: 5,000 triples


	test: 5,000 triples














	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	YAGO3-10

	1,079,040

	5,000

	5,000

	123,182

	37







	Parameters

	
	check_md5hash (bool) – If True check the md5hash of the files (default: False).


	clean_unseen (bool) – If True, filters triples in validation and test sets that include entities not present in the training set.


	add_reciprocal_rels (bool) – Flag which specifies whether to add reciprocal relations. For every <s, p, o> in the dataset
this creates a corresponding triple with reciprocal relation <o, p_reciprocal, s> (default:False).






	Returns

	splits – The dataset splits: {‘train’: train, ‘valid’: valid, ‘test’: test}. Each split is a ndarray of shape (n, 3).



	Return type

	dict





Example

>>> from ampligraph.datasets import load_yago3_10
>>> X = load_yago3_10()
>>> X["valid"][0]
array(['Mikheil_Khutsishvili', 'playsFor', 'FC_Merani_Tbilisi'], dtype=object)












            

          

      

      

    

  

    
      
          
            
  
find_nearest_neighbours


	
ampligraph.discovery.find_nearest_neighbours(kge_model, entities, n_neighbors=10, entities_subset=None, metric='euclidean')

	Return the nearest neighbors of entities.

The method works in the embedding space and finds a desired number of neighboring embeddings.
It can operate from all the entities in the graph or from a subset of interest.


	Parameters

	
	kge_model (ampligraph.latent_features.EmbeddingModel) – Trained kge model


	entities (list or np.array) – List of entities whose neighbors need to be found


	n_neighbors (int) – number of neighbors to be computed


	entities_subset (list or np.array) – List of entities from which neighbors need to be computed.
If this list is not passed, all the entities in the graph would be used


	metric (string or callable) – distance metric to be used with NearestNeighbors algorithm
For values that can be passed, refer sklearn NearestNeighbors






	Returns

	
	neighbors (np.array of size (len(entities), n_neighbors)) – Each row contains the n_neighbors neighbours of corresponding concepts in entities


	distance (np.array of size (len(entities), n_neighbors)) – Each row contains distances of corresponding neighbours










Examples

>>> model = DistMult(batches_count=2, seed=555, epochs=1, k=10,
>>>                  loss='pairwise', loss_params={'margin': 5},
>>>                  optimizer='adagrad', optimizer_params={'lr': 0.1})
>>> X = np.array([['a', 'y', 'b'],
>>>               ['b', 'y', 'a'],
>>>               ['e', 'y', 'c'],
>>>               ['c', 'z', 'a'],
>>>               ['a', 'z', 'd'],
>>>               ['f', 'z', 'g'],
>>>               ['c', 'z', 'g']])
>>> model.fit(X)
>>> neighbors, dist = find_nearest_neighbours(model,
>>>                                           entities=['b'],
>>>                                           n_neighbors=3,
>>>                                           entities_subset=['a', 'c', 'd', 'e', 'f'])
>>> print(neighbors, dist)
[['e' 'd' 'c']] [[0.97474706 0.979108   1.2323136 ]]












            

          

      

      

    

  

    
      
          
            
  
filter_unseen_entities


	
ampligraph.evaluation.filter_unseen_entities(X, model, verbose=False)

	Filter unseen entities in the test set.


	Parameters

	
	X (ndarray, shape (n, 3)) – An array of test triples.


	model (ampligraph.latent_features.EmbeddingModel) – A knowledge graph embedding model.


	verbose (bool) – Verbose mode.






	Returns

	filtered X – An array of test triples containing no unseen entities.



	Return type

	ndarray, shape (n, 3)












            

          

      

      

    

  

    
      
          
            
  
hits_at_n_score


	
ampligraph.evaluation.hits_at_n_score(ranks, n)

	Hits@N.

The function computes how many elements of a vector of rankings ranks make it to the top n positions.

It can be used in conjunction with the learning to rank evaluation protocol of
ampligraph.latent_features.ScoringBasedEmbeddingModel.evaluate().

It is formally defined as follows:


\[Hits@N = \sum_{i = 1}^{|Q|} 1 \, \text{if } rank_{(s, p, o)_i} \leq N\]

where \(Q\) is a set of triples and \((s, p, o)\) is a triple \(\in Q\).

Consider the following example. Each of the two positive triples identified by * are ranked
against four corruptions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple
ranks first. Hits@1 and Hits@3 are:

s        p         o            score   rank
Jack   born_in   Ireland        0.789      1
Jack   born_in   Italy          0.753      2  *
Jack   born_in   Germany        0.695      3
Jack   born_in   China          0.456      4
Jack   born_in   Thomas         0.234      5

s        p         o            score   rank
Jack   friend_with   Thomas     0.901      1  *
Jack   friend_with   China      0.345      2
Jack   friend_with   Italy      0.293      3
Jack   friend_with   Ireland    0.201      4
Jack   friend_with   Germany    0.156      5

Hits@3=1.0
Hits@1=0.5






	Parameters

	
	ranks (ndarray or list, shape (n) or (n,2)) – Input ranks of n test statements.


	n (int) – The maximum rank considered to accept a positive.






	Returns

	hits_n_score – The Hits@n score.



	Return type

	float





Example

>>> import numpy as np
>>> from ampligraph.evaluation.metrics import hits_at_n_score
>>> rankings = np.array([1, 12, 6, 2])
>>> hits_at_n_score(rankings, n=3)
0.5












            

          

      

      

    

  

    
      
          
            
  
mr_score


	
ampligraph.evaluation.mr_score(ranks)

	Mean Rank (MR).

The function computes the mean of a vector of rankings ranks.

It can be used in conjunction with the learning to rank evaluation protocol of
ampligraph.latent_features.ScoringBasedEmbeddingModel.evaluate().

It is formally defined as follows:


\[MR = \frac{1}{|Q|}\sum_{i = 1}^{|Q|}rank_{(s, p, o)_i}\]

where \(Q\) is a set of triples and \((s, p, o)\) is a triple \(\in Q\).


Note

This metric is not robust to outliers.
It is usually presented along the more reliable MRR ampligraph.evaluation.mrr_score().



Consider the following example. Each of the two positive triples identified by * are ranked
against four corruptions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple
ranks first. The resulting MR is:

s        p         o            score   rank
Jack   born_in   Ireland        0.789      1
Jack   born_in   Italy          0.753      2  *
Jack   born_in   Germany        0.695      3
Jack   born_in   China          0.456      4
Jack   born_in   Thomas         0.234      5

s        p         o            score   rank
Jack   friend_with   Thomas     0.901      1  *
Jack   friend_with   China      0.345      2
Jack   friend_with   Italy      0.293      3
Jack   friend_with   Ireland    0.201      4
Jack   friend_with   Germany    0.156      5

MR=1.5






	Parameters

	ranks (ndarray or list, shape (n) or (n,2)) – Input ranks of n test statements.



	Returns

	mr_score – The MR score.



	Return type

	float





Example

>>> from ampligraph.evaluation import mr_score
>>> ranks= [5, 3, 4, 10, 1]
>>> mr_score(ranks)
4.6












            

          

      

      

    

  

    
      
          
            
  
mrr_score


	
ampligraph.evaluation.mrr_score(ranks)

	Mean Reciprocal Rank (MRR).

The function computes the mean of the reciprocal of elements of a vector of rankings ranks.

It is used in conjunction with the learning to rank evaluation protocol of
ampligraph.latent_features.ScoringBasedEmbeddingModel.evaluate().

It is formally defined as follows:


\[MRR = \frac{1}{|Q|}\sum_{i = 1}^{|Q|}\frac{1}{rank_{(s, p, o)_i}}\]

where \(Q\) is a set of triples and \((s, p, o)\) is a triple \(\in Q\).


Note

This metric is similar to mean rank (MR) ampligraph.evaluation.mr_score(). Instead of averaging ranks,
it averages their reciprocals. This is done to obtain a metric which is more robust to outliers.



Consider the following example. Each of the two positive triples identified by * are ranked
against four corruptions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple
ranks first. The resulting MRR is:

s        p         o            score   rank
Jack   born_in   Ireland        0.789      1
Jack   born_in   Italy          0.753      2  *
Jack   born_in   Germany        0.695      3
Jack   born_in   China          0.456      4
Jack   born_in   Thomas         0.234      5

s        p         o            score   rank
Jack   friend_with   Thomas     0.901      1  *
Jack   friend_with   China      0.345      2
Jack   friend_with   Italy      0.293      3
Jack   friend_with   Ireland    0.201      4
Jack   friend_with   Germany    0.156      5

MRR=0.75






	Parameters

	ranks (ndarray or list, shape (n) or (n,2)) – Input ranks of n test statements.



	Returns

	mrr_score – The MRR score.



	Return type

	float





Example

>>> import numpy as np
>>> from ampligraph.evaluation.metrics import mrr_score
>>> rankings = np.array([1, 12, 6, 2])
>>> mrr_score(rankings)
0.4375












            

          

      

      

    

  

    
      
          
            
  
rank_score


	
ampligraph.evaluation.rank_score(y_true, y_pred, pos_lab=1)

	Computes the rank of a triple.

The rank of a positive element against a list of negatives.


\[rank_{(s, p, o)_i}\]


	Parameters

	
	y_true (ndarray, shape (n)) – An array of binary labels. The array only contains one positive.


	y_pred (ndarray, shape (n)) – An array of scores, for the positive element and the n-1 negatives.


	pos_lab (int) – The value of the positive label (default = 1).






	Returns

	rank – The rank of the positive element against the negatives.



	Return type

	int





Example

>>> import numpy as np
>>> from ampligraph.evaluation.metrics import rank_score
>>> y_pred = np.array([.434, .65, .21, .84])
>>> y_true = np.array([0, 0, 1, 0])
>>> rank_score(y_true, y_pred)
4












            

          

      

      

    

  

    
      
          
            
  
select_best_model_ranking


	
ampligraph.evaluation.select_best_model_ranking(model_class, X_train, X_valid, X_test, param_grid, max_combinations=None, param_grid_random_seed=0, use_filter=True, early_stopping=True, early_stopping_params=None, use_test_for_selection=False, entities_subset=None, corrupt_side='s,o', focusE=False, focusE_params={}, retrain_best_model=False, verbose=False)

	Model selection routine for embedding models via either grid search or random search.

For grid search, pass a fixed param_grid and leave max_combinations=None
so that all combinations will be explored.

For random search, delimit max_combinations to your computational budget
and optionally set some parameters to be callables instead of a list (see the documentation for param_grid).


Note

Random search is more efficient than grid search as the number of parameters grows [].
It is also a strong baseline against more advanced methods such as
Bayesian optimization [].



The function also retrains the best performing model on the concatenation of training and validation sets.

Note we generate negatives at runtime according to the strategy described in [BUGD+13].


Note

By default, model selection is done with raw MRR for better runtime performance (use_filter=False).




	Parameters

	
	model_class (str) – The class of the EmbeddingModel to evaluate (‘TransE’, ‘DistMult’, ‘ComplEx’, etc).


	X_train (ndarray, shape (n, 3)) – An array of training triples.


	X_valid (ndarray, shape (n, 3)) – An array of validation triples.


	X_test (ndarray, shape (n, 3)) – An array of test triples.


	param_grid (dict) – A grid of hyperparameters to use in model selection. The routine will train a model for each combination
of these hyperparameters.

Parameters can be either callables or lists.
If callable, it must take no parameters and return a constant value.
If any parameter is a callable, max_combinations must be set to some value.

For example, the learning rate could either be "lr": [0.1, 0.01]
or "lr": lambda: np.random.uniform(0.01, 0.1).




	max_combinations (int) – Maximum number of combinations to explore.
By default (None) all combinations will be explored,
which makes it incompatible with random parameters for random search.


	param_grid_random_seed (int) – Random seed for the parameters that are callables and random.


	use_filter (bool) – If True, it will use the entire input dataset X to compute filtered MRR (default: True).


	early_stopping (bool) – Flag to enable early stopping (default: True).

If set to True, the training loop adopts the following early stopping heuristic:


	The model will be trained regardless of early stopping for burn_in epochs.


	Every check_interval epochs the method will compute the metric specified in criteria.




If such metric decreases for stop_interval checks, we stop training early.

Note the metric is computed on X_valid. This is usually a validation set that you held out.

Also, since criteria is a ranking metric, it requires generating negatives.
Entities used to generate corruptions can be specified as the side(s) of a triple to corrupt.
The method supports filtered metrics, by passing an array of positives to x_filter. This will be used to
filter the negatives generated on the fly (i.e., the corruptions).


Note

Keep in mind the early stopping criteria may introduce a certain overhead
(caused by the metric computation).
The goal is to strike a good trade-off between such overhead and saving training epochs.

A common approach is to use MRR unfiltered:

early_stopping_params={'criteria': 'mrr'}





Note that the size of validation set also contributes to such overhead.
In most cases a smaller validation set would be enough.






	early_stopping_params (dict) – Dictionary of parameters for early stopping.


	The following keys are supported:
	
	criteria: Criteria for early stopping hits10, hits3, hits1 or mrr (default: “mrr”).


	burn_in: Number of epochs to pass before kicking in early stopping (default: 0).


	check_interval: Early stopping interval after burn-in (default: 10).


	stop_interval: Stop if criteria is performing worse over n consecutive checks (default: 5).











	focusE (bool) – Whether to use the focusE layer (default: False). If True, make sure you pass the weights as an additional
column concatenated after the training triples.


	focusE_params (dict) – Dictionary of parameters if focusE is activated.


	use_test_for_selection (bool) – Use test set for model selection. If False, uses validation set (default: False).


	entities_subset (array-like) – List of entities to use for corruptions. If None, will generate corruptions
using all distinct entities (default: None).


	corrupt_side (str) – Specifies which side to corrupt the entities:
“s” to corrupt only subject.
“o” to corrupt only object.
“s+o” to corrupt both subject and object.
“s,o” to corrupt both subject and object but ranks are computed separately (default).


	retrain_best_model (bool) – Flag to indicate whether best model should be re-trained at the end with the validation set used in the search
(default: False).


	verbose (bool) – Verbose mode for the model selection procedure (which is independent of the verbose mode in the model fit).

Verbose mode includes display of the progress bar, logging info for each iteration,
evaluation information, and exception details.

If you need verbosity inside the model training itself, change the verbose parameter within the param_grid.








	Returns

	
	best_model (EmbeddingModel) – The best trained embedding model obtained in model selection.


	best_params (dict) – The hyperparameters of the best embedding model best_model.


	best_mrr_train (float) – The MRR (unfiltered) of the best model computed over the validation set in the model selection loop.


	ranks_test (ndarray, shape (n) or (n,2)) – An array of ranks of test triples.
When corrupt_side='s,o' the function returns an array of shape (n,2). The first column represents the
rank against subject corruptions and the second column represents the rank against object corruptions.
In other cases, it returns an array of size (n), i.e., rank against the specified corruptions.


	mrr_test (float) – The MRR (filtered) of the best model, retrained on the concatenation of training and validation sets,
computed over the test set.


	experimental_history (list of dict) – A list containing all the intermediate experimental results:
the model parameters and the corresponding validation metrics.










Example

>>> from ampligraph.datasets import load_wn18
>>> from ampligraph.evaluation import select_best_model_ranking
>>> import numpy as np
>>>
>>> X = load_wn18()
>>> model_class = 'ComplEx'
>>> param_grid = {
>>>                "batch_size": [1000],
>>>                "seed": 0,
>>>                "epochs": [4000],
>>>                "k": [100, 200],
>>>                "eta": [5,10,15],
>>>                "loss": ["pairwise", "nll"],
>>>                "loss_params": {
>>>                    "margin": [2]
>>>                },
>>>                "regularizer": ["LP", None],
>>>                "regularizer_params": {
>>>                    "p": [1, 3],
>>>                    "lambda": [1e-4, 1e-5]
>>>                },
>>>                "optimizer": ["adagrad", "adam"],
>>>                "optimizer_params":{
>>>                    "lr": lambda: np.random.uniform(0.0001, 0.01)
>>>                },
>>>                "verbose": False
>>>               }
>>> select_best_model_ranking(model_class, X['train'], X['valid'], X['test'], param_grid,
>>>                           max_combinations=20, use_filter=True, verbose=True,
>>>                           early_stopping=True)












            

          

      

      

    

  

    
      
          
            
  
train_test_split_no_unseen


	
ampligraph.evaluation.train_test_split_no_unseen(X, test_size=100, seed=0, allow_duplication=False, filtered_test_predicates=None)

	Split into train and test sets.

This function carves out a test set that contains only entities
and relations which also occur in the training set.

This is an improved version which is much faster - since this does not sample like in the earlier approach but
rather shuffles indices and gets the test set of required size by selecting from the shuffled indices only triples
which do not disconnect entities/relations.


	Parameters

	
	X (ndarray, shape (n, 3)) – The dataset to split.


	test_size (int, float) – If int, the number of triples in the test set.
If float, the percentage of total triples.


	seed (int) – A random seed used to split the dataset.


	allow_duplication (bool) – Flag to indicate if the test set can contain duplicated triples.


	filtered_test_predicates (None, list) – If None, all predicate types will be considered for the test set.
If list, only the predicate types in the list will be considered for
the test set.






	Returns

	
	X_train (ndarray, shape (n, 3)) – The training set.


	X_test (ndarray, shape (n, 3)) – The test set.










Example

>>> import numpy as np
>>> from ampligraph.evaluation import train_test_split_no_unseen
>>> # load your dataset to X
>>> X = np.array([['a', 'y', 'b'],
>>>               ['f', 'y', 'e'],
>>>               ['b', 'y', 'a'],
>>>               ['a', 'y', 'c'],
>>>               ['c', 'y', 'a'],
>>>               ['a', 'y', 'd'],
>>>               ['c', 'y', 'd'],
>>>               ['b', 'y', 'c'],
>>>               ['f', 'y', 'e']])
>>> # if you want to split into train/test datasets
>>> X_train, X_test = train_test_split_no_unseen(X, test_size=2)
>>> X_train
array([['a', 'y', 'd'],
   ['b', 'y', 'a'],
   ['a', 'y', 'c'],
   ['f', 'y', 'e'],
   ['a', 'y', 'b'],
   ['c', 'y', 'a'],
   ['b', 'y', 'c']], dtype='<U1')
>>> X_test
array([['f', 'y', 'e'],
   ['c', 'y', 'd']], dtype='<U1')
>>> # if you want to split into train/valid/test datasets, call it 2 times
>>> X_train_valid, X_test = train_test_split_no_unseen(X, test_size=2, backward_compatible=True)
>>> X_train, X_valid = train_test_split_no_unseen(X_train_valid, test_size=2, backward_compatible=True)
>>> X_train
array([['a', 'y', 'b'],
   ['a', 'y', 'd'],
   ['a', 'y', 'c'],
   ['c', 'y', 'a'],
   ['f', 'y', 'e']], dtype='<U1')
>>> X_valid
array([['c', 'y', 'd'],
   ['f', 'y', 'e']], dtype='<U1')
>>> X_test
array([['b', 'y', 'c'],
   ['b', 'y', 'a']], dtype='<U1')












            

          

      

      

    

  

    
      
          
            
  
AbsoluteMarginLoss


	
class ampligraph.latent_features.AbsoluteMarginLoss(loss_params={}, verbose=False)

	Absolute margin, max-margin loss.

Introduced in [HOSM17].


\[\mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}}\sum_{t^- \in \mathcal{C}}
max(0, [\gamma - f_{model}(t^-;\Theta)]) - f_{model}(t^+;\Theta)\]

where \(\gamma\) is the margin, \(\mathcal{G}\) is the set of positives, \(\mathcal{C}\) is the
set of corruptions, \(f_{model}(t;\Theta)\) is the model-specific scoring function.

Example

>>> import ampligraph.latent_features.loss_functions as lfs
>>> loss = lfs.AbsoluteMarginLoss({'margin': 1, 'reduction': 'mean'})
>>> isinstance(loss, lfs.AbsoluteMarginLoss)
True





>>> loss = lfs.get('absolute_margin')
>>> isinstance(loss, lfs.AbsoluteMarginLoss)
True





Attributes







	external_params

	



	name

	






Methods







	__init__([loss_params, verbose])

	Initialize the loss.







	
__init__(loss_params={}, verbose=False)

	Initialize the loss.


	Parameters

	loss_params (dict) – Dictionary of loss-specific hyperparams:


	”margin”: (float) - Margin to be used in pairwise loss computation (default: 1).


	”reduction”: (str) - Specifies whether to “sum” or take “mean” of loss per sample w.r.t.            corruption (default: “sum”).




Example: loss_params={'margin': 1}.


















            

          

      

      

    

  

    
      
          
            
  
AdagradOptimizer




            

          

      

      

    

  

    
      
          
            
  
AdamOptimizer




            

          

      

      

    

  

    
      
          
            
  
Constant




            

          

      

      

    

  

    
      
          
            
  
LP_regularizer


	
class ampligraph.latent_features.LP_regularizer(trainable_param, regularizer_parameters={})

	Norm \(L^{p}\) regularizer.

It is passed to the model as the entity_relation_regularizer argument of the
compile() method.


	Parameters

	
	trainable_param (tf.Variable) – Trainable parameters of the model that need to be regularized.


	regularizer_parameters (dict) – Parameters of the regularizer:


	p: (int) - p for the LP regularizer. For example, when \(p=2\) (default), it uses the L2 regularizer.


	lambda : (float) - Regularizer weight (default: 0.00001).











	Returns

	regularizer – Regularizer instance from the tf.keras.regularizer class.



	Return type

	tf.keras.regularizer












            

          

      

      

    

  

    
      
          
            
  
MomentumOptimizer




            

          

      

      

    

  

    
      
          
            
  
NLLLoss


	
class ampligraph.latent_features.NLLLoss(loss_params={}, verbose=False)

	Negative Log-Likelihood loss.

As described in [TWR+16].


\[\mathcal{L}(\Theta) = \sum_{t \in \mathcal{G} \cup \mathcal{C}}log(1 + exp(-y \, f_{model}(t;\Theta)))\]

where \(y \in \{-1, 1\}\) is the label of the statement, \(\mathcal{G}\) is the set of positives,
\(\mathcal{C}\) is the set of corruptions and \(f_{model}(t;\Theta)\) is the model-specific scoring function.

Example

>>> import ampligraph.latent_features.loss_functions as lfs
>>> loss = lfs.NLLLoss({'reduction': 'mean'})
>>> isinstance(loss, lfs.NLLLoss)
True





>>> loss = lfs.get('nll')
>>> isinstance(loss, lfs.NLLLoss)
True





Attributes







	external_params

	



	name

	






Methods







	__init__([loss_params, verbose])

	Initialize the loss..







	
__init__(loss_params={}, verbose=False)

	Initialize the loss..


	Parameters

	loss_params (dict) – Dictionary of hyperparams. No hyperparameters are required for this loss except for “reduction”.


	”reduction”: (str) - Specifies whether to “sum” or take “mean” of loss per sample w.r.t.             corruption (default:”sum”).





















            

          

      

      

    

  

    
      
          
            
  
NLLMulticlass


	
class ampligraph.latent_features.NLLMulticlass(loss_params={}, verbose=False)

	Multiclass Negative Log-Likelihood loss.

Introduced in [], this loss can be used when both the subject and objects are corrupted
(to use it, pass corrupt_sides=['s,o'] in the embedding model parameters).

This loss was re-engineered in [] where only the object was corrupted to get improved
performance (to use it in this way pass corrupt_sides ='o' in the embedding model parameters).


\[\mathcal{L(X)} = -\sum_{x_{e_1,e_2,r_k} \in X} log\,p(e_2|e_1,r_k)
 -\sum_{x_{e_1,e_2,r_k} \in X} log\,p(e_1|r_k, e_2)\]

Example

>>> import ampligraph.latent_features.loss_functions as lfs
>>> loss = lfs.NLLMulticlass({'reduction': 'mean'})
>>> isinstance(loss, lfs.NLLMulticlass)
True





>>> loss = lfs.get('multiclass_nll')
>>> isinstance(loss, lfs.NLLMulticlass)
True





Attributes







	external_params

	



	name

	






Methods







	__init__([loss_params, verbose])

	Initialize the loss.







	
__init__(loss_params={}, verbose=False)

	Initialize the loss.


	Parameters

	loss_params (dict) – Dictionary of loss-specific hyperparams:


	”reduction”: (str) - Specifies whether to “sum” or take the “mean” of loss per sample w.r.t.              corruption (default: “sum”).





















            

          

      

      

    

  

    
      
          
            
  
PairwiseLoss


	
class ampligraph.latent_features.PairwiseLoss(loss_params={}, verbose=False)

	Pairwise, max-margin loss.

Introduced in [BUGD+13].


\[\mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}}\sum_{t^- \in \mathcal{C}}max(0, [\gamma + f_{model}(t^-;\Theta)
 - f_{model}(t^+;\Theta)])\]

where \(\gamma\) is the margin, \(\mathcal{G}\) is the set of positives,
\(\mathcal{C}\) is the set of corruptions, \(f_{model}(t;\Theta)\) is the model-specific scoring function.

Example

>>> import ampligraph.latent_features.loss_functions as lfs
>>> loss = lfs.PairwiseLoss({'margin': 0.005, 'reduction': 'sum'})
>>> isinstance(loss, lfs.PairwiseLoss)
True





>>> loss = lfs.get('pairwise')
>>> isinstance(loss, lfs.PairwiseLoss)
True





Attributes







	external_params

	



	name

	






Methods







	__init__([loss_params, verbose])

	Initialize the loss.







	
__init__(loss_params={}, verbose=False)

	Initialize the loss.


	Parameters

	loss_params (dict) – Dictionary of loss-specific hyperparams:


	”margin”: (float) - Margin to be used in pairwise loss computation (default: 1).


	”reduction”: (str) - Specifies whether to “sum” or take the “mean” of loss per sample                 w.r.t. corruptions (default: “sum”).




Example: loss_params={‘margin’: 1}.


















            

          

      

      

    

  

    
      
          
            
  
SGDOptimizer




            

          

      

      

    

  

    
      
          
            
  
ScoringBasedEmbeddingModel


	
class ampligraph.latent_features.ScoringBasedEmbeddingModel(*args, **kwargs)

	Class for handling KGE models which follows the ranking based protocol.

Example

>>> # create model and compile using user defined optimizer settings and
>>> # user defined settings of an existing loss
>>> from ampligraph.datasets import load_fb15k_237
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.latent_features.loss_functions import SelfAdversarialLoss
>>> import tensorflow as tf
>>> X = load_fb15k_237()
>>> loss = SelfAdversarialLoss({'margin': 0.1, 'alpha': 5, 'reduction': 'sum'})
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer='adam', loss=loss)
>>> model.fit(X['train'],
>>>           batch_size=10000,
>>>           epochs=5)
Epoch 1/5
29/29 [==============================] - 3s 87ms/step - loss: 13496.5752
Epoch 2/5
29/29 [==============================] - 1s 36ms/step - loss: 13488.8682
Epoch 3/5
29/29 [==============================] - 1s 35ms/step - loss: 13436.2725
Epoch 4/5
29/29 [==============================] - 1s 35ms/step - loss: 13259.0840
Epoch 5/5
29/29 [==============================] - 1s 34ms/step - loss: 12977.0117





Attributes







	metrics

	Returns all the metrics that will be computed during training.






Methods







	__init__(eta, k[, scoring_type, seed, ...])

	Initializes the scoring based embedding model using the user specified scoring function.



	build(input_shape)

	Override the build function of the Model class.



	build_full_model([batch_size])

	This method is called while loading the weights to build the model.



	calibrate(X_pos[, X_neg, ...])

	Calibrate predictions.



	call(inputs[, training])

	Computes the scores of the triples and returns the corruption scores as well.



	compile([optimizer, loss, ...])

	Compile the model.



	compute_focusE_weights(weights, structure_weight)

	Compute positive and negative weights to scale scores if use_focusE=True.



	compute_output_shape(inputShape)

	Returns the output shape of the outputs of the call function.



	evaluate([x, batch_size, verbose, ...])

	Evaluate the inputs against corruptions and return ranks.



	fit([x, batch_size, epochs, verbose, ...])

	Fit the model on the provided data.



	from_config(config)

	Creates a layer from its config.



	get_config()

	Get the configuration hyper-parameters of the scoring based embedding model.



	get_count([concept_type])

	Returns the count of entities and relations that were present during training.



	get_emb_matrix_test([part_number, ...])

	Get the embedding matrix during evaluation.



	get_embeddings(entities[, embedding_type])

	Get the embeddings of entities or relations.



	get_focusE_params([dict_params])

	Get parameters for focusE.



	get_indexes(X[, type_of, order])

	Converts given data to indexes or to raw data (according to order).



	get_invalid_keys(X[, data_type])

	Get the invalid keys in a collection of triples.



	get_train_embedding_matrix_size()

	Returns the size of the embedding matrix used for training.



	is_fit()

	Check whether the model has been fitted already.



	load_metadata([filepath, filedir])

	



	load_weights(filepath)

	Loads the model weights.



	make_calibrate_function()

	Similar to keras lib, this function returns the handle to the calibrate step function.



	make_predict_function()

	Similar to keras lib, this function returns the handle to the predict step function.



	make_test_function()

	Similar to keras lib, this function returns the handle to test step function.



	make_train_function()

	Similar to keras lib, this function returns the handle to the training step function.



	partition_change_updates(num_ents, ent_emb, ...)

	Perform the changes that are required when the partition is modified during training.



	perform_validation(validation_data, ...)

	Function to perform the validation.



	predict(x[, batch_size, verbose, callbacks])

	Compute scores of the input triples.



	predict_proba(x[, batch_size, verbose, ...])

	Compute calibrated scores (\(0 ≤ score ≤ 1\)) for the input triples.



	predict_step(inputs)

	Returns the output of predict step on a batch of data.



	predict_step_partitioning(inputs)

	Returns the output of predict step on a batch of data.



	process_model_inputs_for_test(triples)

	Return the processed triples.



	save(filepath[, overwrite, ...])

	Save the model.



	save_metadata([filepath, filedir])

	Save metadata.



	save_weights(filepath[, overwrite])

	Save the trainable weights.



	train_step(data)

	Training step.



	update_focusE_params()

	Update the structural weight after decay.







	
__init__(eta, k, scoring_type='DistMult', seed=0, max_ent_size=None, max_rel_size=None)

	Initializes the scoring based embedding model using the user specified scoring function.


	Parameters

	
	eta (int) – Num of negatives to use during training per triple.


	k (int) – Embedding size.


	scoring_type (str) – Name of the scoring layer to use.


	TransE  Translating embedding scoring function will be used


	DistMult DistMult embedding scoring function will be used


	ComplEx ComplEx embedding scoring function will be used


	HolE Holograph embedding scoring function will be used


	RotatE RotatE embedding scoring function will be used







	seed (int) – Random seed.


	max_ent_size (int) – Maximum number of entities that can occur in any partition (default: None).


	max_rel_size (int) – Maximum number of relations that can occur in any partition (default: None).













	
build(input_shape)

	Override the build function of the Model class.

It is called on the first call to __call__.
With this function we set some internal parameters of the encoding layers (needed to build that layers
themselves) based on the input data supplied by the user while calling the ~ScoringBasedEmbeddingModel.fit method.






	
build_full_model(batch_size=100)

	This method is called while loading the weights to build the model.






	
calibrate(X_pos, X_neg=None, positive_base_rate=None, batch_size=32, epochs=50, verbose=0)

	Calibrate predictions.

The method implements the heuristics described in [TC20],
using Platt scaling [].

The calibrated predictions can be obtained with predict_proba()
after calibration is done.

Ideally, calibration should be performed on a validation set that was not used to train the embeddings.

There are two modes of operation, depending on the availability of negative triples:


	Both positive and negative triples are provided via X_pos and X_neg respectively.         The optimization is done using a second-order method (limited-memory BFGS),         therefore no hyperparameter needs to be specified.


	Only positive triples are provided, and the negative triples are generated by corruptions,         just like it is done in training or evaluation. The optimization is done using a first-order method (ADAM),         therefore batches_count and epochs must be specified.




Calibration is highly dependent on the base rate of positive triples.
Therefore, for mode (2) of operation, the user is required to provide the positive_base_rate argument.
For mode (1), that can be inferred automatically by the relative sizes of the positive and negative sets,
but the user can override this behaviour by providing a value to positive_base_rate.

Defining the positive base rate is the biggest challenge when calibrating without negatives. That depends on
the user choice of triples to be evaluated during test time.
Let’s take the WN11 dataset as an example: it has around 50% positives triples on both the validation set
and test set, so the positive base rate follows to be 50%. However, should the user resample it to have
75% positives and 25% negatives, the previous calibration would be degraded. The user must recalibrate
the model with a 75% positive base rate. Therefore, this parameter depends on how the user handles the
dataset and cannot be determined automatically or a priori.


Note

[TC20] calibration experiments available here [https://github.com/Accenture/AmpliGraph/tree/paper/ICLR-20/experiments/ICLR-20].




	Parameters

	
	X_pos (np.array, shape (n,3) or str or GraphDataLoader or AbstractGraphPartitioner) – Data OR Filename of the data file OR Data Handle to be used as positive triples.


	X_neg (np.array, shape (n,3) or str or GraphDataLoader or AbstractGraphPartitioner) – Data OR Filename of the data file OR Data Handle to be used as negative triples.

If None, the negative triples are generated via corruptions
and the user must provide a positive base rate instead.




	positive_base_rate (float) – Base rate of positive statements.

For example, if we assume there is an even chance for any query to be true, the base rate would be 50%.

If X_neg is provided and positive_base_rate=None, the relative sizes of X_pos and X_neg
will be used to determine the base rate. Say we have 50 positive triples and 200 negative
triples, the positive base rate will be assumed to be \(\frac{50}{(50+200)} = \frac{1}{5} = 0.2\).

This value must be \(\in [0,1]\).




	batches_size (int) – Batch size for positives.


	epochs (int) – Number of epochs used to train the Platt scaling model.
Only applies when X_neg=None.


	verbose (bool) – Verbosity (default: False).








Example

>>> from ampligraph.datasets import load_fb15k_237
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> import numpy as np
>>> dataset = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx')
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(dataset['train'],
>>>           batch_size=10000,
>>>           epochs=5)
>>> print('Raw scores (sorted):', np.sort(model.predict(dataset['test'])))
>>> print('Indices obtained by sorting (scores):', np.argsort(model.predict(dataset['test'])))
Raw scores (sorted): [-1.0689778   -0.42082012  -0.39887887 ...  3.261838  3.2755773  3.2768354 ]
Indices obtained by sorting (scores): [ 3834 18634  4066 ...  6237 13633 10961]
>>> model.calibrate(dataset['test'],
>>>                 batch_size=10000,
>>>                 positive_base_rate=0.9,
>>>                 epochs=100)
>>> print('Calibrated scores (sorted):', np.sort(model.predict_proba(dataset['test'])))
>>> print('Indices obtained by sorting (Calibrated):', np.argsort(model.predict_proba(dataset['test'])))
Calibrated scores (sorted): [0.49547982 0.5396996  0.54118955 ... 0.7624245  0.7631044  0.76316655]
Indices obtained by sorting (Calibrated): [ 3834 18634  4066 ...  6237 13633 10961]










	
call(inputs, training=False)

	Computes the scores of the triples and returns the corruption scores as well.


	Parameters

	inputs (ndarray, shape (n, 3)) – Batch of input triples.



	Returns

	out – List of input scores along with their corruptions.



	Return type

	list










	
compile(optimizer='adam', loss=None, entity_relation_initializer='glorot_uniform', entity_relation_regularizer=None, **kwargs)

	Compile the model.


	Parameters

	
	optimizer (str (name of optimizer) or optimizer instance) – The optimizer used to minimize the loss function. For pre-defined options, choose between
“sgd”, “adagrad”, “adam”, “rmsprop”, etc.
See tf.keras.optimizers [https://www.tensorflow.org/api_docs/python/tf/keras/optimizers]
for up-to-date details.

If a string is passed, then the default parameters of the optimizer will be used.

If you want to use custom hyperparameters you need to create an instance of the optimizer and
pass the instance to the compile function

import tensorflow as tf
adam_opt = tf.keras.optimizers.Adam(learning_rate=0.003)
model.compile(loss='pairwise', optim=adam_opt)








	loss (str (name of objective function), objective function or ampligraph.latent_features.loss_functions.Loss) – If a string is passed, you can use one of the following losses which will be used with their
default setting:


	”pairwise”:  the model will use the pairwise margin-based loss function.


	”nll”: the model will use the negative loss likelihood.


	”absolute_margin”: the model will use the absolute margin likelihood.


	”self_adversarial”: the model will use the adversarial sampling loss function.


	”multiclass_nll”: the model will use the multiclass nll loss.

model.compile(loss='absolute_margin', optim='adam')









If you want to modify the default parameters of the loss function, you need to explictly create an instance
of the loss with required hyperparameters and then pass this instance.

from ampligraph.latent_features import AbsoluteMarginLoss
ab_loss = AbsoluteMarginLoss(loss_params={'margin': 3})
model.compile(loss=ab_loss, optim='adam')





An objective function is any callable with the signature
loss = fn(score_true, score_corr, eta)

# Create a user defined loss function with the above signature
def userLoss(scores_pos, scores_neg):
    # user defined loss - takes in 2 params and returns loss
    neg_exp = tf.exp(scores_neg)
    pos_exp = tf.exp(scores_pos)
    # Apply softmax to the scores
    score = pos_exp / (tf.reduce_sum(neg_exp, axis=0) + pos_exp)
    loss = -tf.math.log(score)
    return loss
# Pass this loss while compiling the model
model.compile(loss=userLoss, optim='adam')








	entity_relation_initializer (str (name of initializer function), initializer function or         tf.keras.initializers.Initializer or list.) – Initializer of the entity and relation embeddings. This is either a single value or a list of size 2.
If a single value is passed, then both the entities and relations will be initialized based on
the same initializer; if a list, the first initializer will be used for entities and the second
for relations.

If a string is passed, then the default parameters will be used. Choose between
“random_normal”, “random_uniform”, “glorot_normal”, “he_normal”, etc.

See tf.keras.initializers [https://www.tensorflow.org/api_docs/python/tf/keras/initializers]
for up-to-date details.

model.compile(loss='pairwise', optim='adam',
              entity_relation_initializer='random_normal')





If the user wants to use custom hyperparameters, then an instance of the
tf.keras.initializers.Initializer needs to be passed.

import tensorflow as tf
init = tf.keras.initializers.RandomNormal(stddev=0.00003)
model.compile(loss='pairwise', optim='adam',
              entity_relation_initializer=init)





If the user wants to define custom initializer it can be any callable with the signature init = fn(shape)

def my_init(shape):
    return tf.random.normal(shape)
model.compile(loss='pairwise', optim='adam',
              entity_relation_initializer=my_init)








	entity_relation_regularizer (str (name of regularizer function) or regularizer function or         tf.keras.regularizers.Regularizer instance or list) – Regularizer of entities and relations.
If a single value is passed, then both the entities and relations will be regularized based on
the same regularizer; if a list, the first regularizer will be used for entities and second
for relations.

If a string is passed, then the default parameters of the regularizers will be used. Choose between
“l1”, “l2”, “l1_l2”, etc.

See tf.keras.regularizers [https://www.tensorflow.org/api_docs/python/tf/keras/regularizers]
for up-to-date details.

model.compile(loss='pairwise', optim='adam',
              entity_relation_regularizer='l2')





If the user wants to use custom hyperparameters, then an instance of the
tf.keras.regularizers.Regularizer needs to be passed.

import tensorflow as tf
reg = tf.keras.regularizers.L1L2(l1=0.001, l2=0.1)
model.compile(loss='pairwise', optim='adam',
              entity_relation_regularizer=reg)





If the user wants to define custom regularizer it can be any callable with signature
reg = fn(weight_matrix).

def my_reg(weight_mx):
      return 0.01 * tf.math.reduce_sum(tf.math.abs(weight_mx))
model.compile(loss='pairwise', optim='adam',
              entity_relation_regularizer=my_reg)














Example

>>> from ampligraph.datasets import load_fb15k_237
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> X = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(X['train'],
>>>           batch_size=10000,
>>>           epochs=5)
Epoch 1/5
29/29 [==============================] - 2s 61ms/step - loss: 67361.3047
Epoch 2/5
29/29 [==============================] - 1s 35ms/step - loss: 67318.6094
Epoch 3/5
29/29 [==============================] - 1s 34ms/step - loss: 67020.0703
Epoch 4/5
29/29 [==============================] - 1s 34ms/step - loss: 65867.3750
Epoch 5/5
29/29 [==============================] - 1s 34ms/step - loss: 63517.9062










	
compute_focusE_weights(weights, structure_weight)

	Compute positive and negative weights to scale scores if use_focusE=True.


	Parameters

	
	weights (array-like, shape (n, m)) – Batch of weights associated triples.


	strucuture_weight (float) – Structural influence assigned to the weights.






	Returns

	out – Tuple where the first elements is a tensor containing the positive weights
and the second is a tensor containing the negative weights.



	Return type

	tuple of two tf.Tensors, (tf.Tensor(shape=(n, 1)), tf.Tensor(shape=(n * self.eta, 1)))










	
compute_output_shape(inputShape)

	Returns the output shape of the outputs of the call function.


	Parameters

	input_shape (tuple) – Shape of inputs of call function.



	Returns

	output_shape – List with the shape of outputs of call function for the input triples and the corruption scores.



	Return type

	list of tuples










	
evaluate(x=None, batch_size=10, verbose=True, use_filter=False, corrupt_side='s,o', entities_subset=None, ranking_strategy='worst', callbacks=None, dataset_type='test')

	Evaluate the inputs against corruptions and return ranks.


	Parameters

	
	x (np.array, shape (n,3) or str or GraphDataLoader or AbstractGraphPartitioner) – Data OR Filename of the data file OR Data Handle to be used for training.


	batch_size (int) – Batch size to use during evaluation.
May be overridden if x is GraphDataLoader or AbstractGraphPartitioner instance.


Warning

Evaluation batch size can often be the reason for Out-Of-Memory (OOM) Errors. Beware of it!






	verbose (bool) – Verbosity mode.


	use_filter (bool or dict) – Whether to use a filter of not. If a dictionary is specified, the data in the dict is concatenated
and used as filter.


	corrupt_side (str) – Which side to corrupt of a triple to corrupt. It can be the subject (corrupt_size="s"),
the object (corrupt_size="o"), the subject and the object (corrupt_size="s+o" or
corrupt_size="s,o") (default:”s,o”).


	ranking_strategy (str) – Indicates how to break ties when a test triple gets the same rank of a corruption.
Can be one of the three types: “best”, “middle”, “worst” (default: “worst”, i.e.,
the worst rank is assigned to the test triple).


	entities_subset (list or np.array) – Subset of entities to be used for generating corruptions.


	callbacks (list of keras.callbacks.Callback instances) – List of callbacks to apply during evaluation.






	Returns

	rank – Ranking of test triples against subject corruptions and/or object corruptions.



	Return type

	np.array, shape (n, number of corrupted sides)





Example

>>> from ampligraph.datasets import load_fb15k_237
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.evaluation.metrics import mrr_score, hits_at_n_score, mr_score
>>> X = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(X['train'],
>>>           batch_size=10000,
>>>           epochs=5)
Epoch 1/5
29/29 [==============================] - 2s 71ms/step - loss: 67361.3047
Epoch 2/5
29/29 [==============================] - 1s 35ms/step - loss: 67318.6094
Epoch 3/5
29/29 [==============================] - 1s 35ms/step - loss: 67020.0703
Epoch 4/5
29/29 [==============================] - 1s 33ms/step - loss: 65867.3750
Epoch 5/5
29/29 [==============================] - 1s 34ms/step - loss: 63517.9062
>>> ranks = model.evaluate(X['test'],
>>>                        batch_size=100,
>>>                        corrupt_side='s,o',
>>>                        use_filter={'train': X['train'],
>>>                                    'valid': X['valid'],
>>>                                    'test': X['test'])
>>> mr_score(ranks), mrr_score(ranks), hits_at_n_score(ranks, 1), hits_at_n_score(ranks, 10), len(ranks)
28 triples containing invalid keys skipped!
9 triples containing invalid keys skipped!
2045/2045 [==============================] - 149s 73ms/step
(428.44671689989235,
 0.25761041025282316,
 0.1898179861043155,
 0.391965945787259,
 20438)










	
fit(x=None, batch_size=1000, epochs=100, verbose=True, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, initial_epoch=0, validation_batch_size=10, validation_corrupt_side='s,o', validation_freq=10, validation_burn_in=0, validation_filter=False, validation_entities_subset=None, partitioning_k=1, focusE=False, focusE_params={})

	Fit the model on the provided data.


	Parameters

	
	x (np.array, shape (n, 3), or str or GraphDataLoader or AbstractGraphPartitioner) – Data OR Filename of the data file OR Data Handle to be used for training.


	batch_size (int) – Batch size to use during training (default: 1000).
May be overridden if x is a GraphDataLoader or AbstractGraphPartitioner instance.


	epochs (int) – Number of epochs to train (default: 100).


	verbose (bool) – Verbosity (default: True).


	callbacks (list of tf.keras.callbacks.Callback) – List of callbacks to be used during training (default: None).


	validation_split (float) – Validation split to carve out of x (default: 0.0) (currently supported only when x is a np.array).


	validation_data (np.array, shape (n, 3) or str or GraphDataLoader or AbstractGraphPartitioner) – Data OR Filename of the data file OR Data Handle to be used for validation.


	shuffle (bool) – Indicates whether to shuffle the data after every epoch during training (default: True).


	epoch (initial) – Initial epoch number (default: 0).


	validation_batch_size (int) – Batch size to use during validation (default: 10).
May be overridden if validation_data is GraphDataLoader or AbstractGraphPartitioner instance.


	validation_freq (int) – Indicates how often to validate (default: 10).


	validation_burn_in (int) – The burn-in time after which the validation kicks in (default: 0).


	validation_filter (bool or dict) – Validation filter to be used.


	validation_entities_subset (list or np.array) – Subset of entities to be used for generating corruptions.


Note

One can perform early stopping using the tensorflow callback tf.keras.callbacks.EarlyStopping
as shown in the accompanying example below.






	focusE (bool) – Specify whether to include the FocusE layer (default: False).
The FocusE layer [PC21] allows to inject numeric edge attributes into the scoring layer
of a traditional knowledge graph embedding architecture.
Semantically, the numeric value can signify importance, uncertainity, significance, confidence…
of a triple.


Note

In order to activate focusE, the training data must have shape (n, 4), where the first three columns
store subject, predicate and object of triples, and the 4-th column stores the numerical edge value
associated with each triple.






	focusE_params (dict) – If FocusE layer is included, specify its hyper-parameters.
The following hyper-params can be passed:


	”non_linearity”: can be one of the following values “linear”, “softplus”, “sigmoid”, “tanh”.


	”stop_epoch”: specifies how long to decay (linearly) the numeric values from 1 to original value.


	”structural_wt”: structural influence hyperparameter \(\in [0, 1]\) that modulates the influence of graph topology.




If focusE==True and focusE_params==dict(), then the default values are passed:
non_linearity="linear", stop_epoch=251 and structural_wt=0.001.




	partitioning_k (int) – Num of partitions to use while training (default: 1, i.e., the data is not partitioned).
May be overridden if x is an AbstractGraphPartitioner instance.


Note

This function is quite useful when the size of your dataset is extremely large and cannot fit in memory.
Setting this to a number strictly larger than 1 will automatically partition the data using
BucketGraphPartitioner.
Kindly checkout the tutorials for usage in Advanced mode.










	Returns

	history – Its History.history attribute is a record of training loss values, as well as validation loss
and validation metrics values.



	Return type

	History object





Example

>>> from ampligraph.datasets import load_fb15k_237
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> X = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(X['train'],
>>>           batch_size=10000,
>>>           epochs=5)
Epoch 1/5
29/29 [==============================] - 2s 71ms/step - loss: 67361.3047
Epoch 2/5
29/29 [==============================] - 1s 35ms/step - loss: 67318.6094
Epoch 3/5
29/29 [==============================] - 1s 37ms/step - loss: 67020.0703
Epoch 4/5
29/29 [==============================] - 1s 35ms/step - loss: 65867.3750
Epoch 5/5
29/29 [==============================] - 1s 35ms/step - loss: 63517.9062





>>> # Early stopping example
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.datasets import load_fb15k_237
>>> dataset = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=1,
>>>                                    k=10,
>>>                                    scoring_type='TransE')
>>> model.compile(optimizer='adam', loss='multiclass_nll')
>>> import tensorflow as tf
>>> early_stop = tf.keras.callbacks.EarlyStopping(monitor="val_mrr",            # which metrics to monitor
>>>                                               patience=3,                   # If the monitored metric doesnt improve for these many checks the model early stops
>>>                                               verbose=1,                    # verbosity
>>>                                               mode="max",                   # how to compare the monitored metrics; "max" means higher is better
>>>                                               restore_best_weights=True)    # restore the weights with best value
>>> # the early stopping instance needs to be passed as callback to fit function
>>> model.fit(dataset['train'],
>>>           batch_size=10000,
>>>           epochs=5,
>>>           validation_freq=1,                       # validation frequency
>>>           validation_batch_size=100,               # validation batch size
>>>           validation_burn_in=3,                    # burn in time
>>>           validation_corrupt_side='s,o',           # which side to corrupt
>>>           validation_data=dataset['valid'][::100], # Validation data
>>>           callbacks=[early_stop])                  # Pass the early stopping object as a callback
Epoch 1/5
29/29 [==============================] - 2s 82ms/step - loss: 6698.2188
Epoch 2/5
29/29 [==============================] - 1s 34ms/step - loss: 6648.8862
Epoch 3/5
3/3 [==============================] - 1s 446ms/steposs: 6652.895
29/29 [==============================] - 2s 84ms/step - loss: 6590.2842 - val_mrr: 0.0811 -
val_mr: 1776.4545 - val_hits@1: 0.0000e+00 - val_hits@10: 0.2301 - val_hits@100: 0.4148
Epoch 4/5
3/3 [==============================] - 0s 102ms/steposs: 6564.021
29/29 [==============================] - 1s 47ms/step - loss: 6517.4517 - val_mrr: 0.0918 -
val_mr: 1316.6335 - val_hits@1: 0.0000e+00 - val_hits@10: 0.2528 - val_hits@100: 0.4716
Epoch 5/5
3/3 [==============================] - 1s 177ms/steposs: 6468.798
29/29 [==============================] - 2s 62ms/step - loss: 6431.8696 - val_mrr: 0.0901 -
val_mr: 1074.8920 - val_hits@1: 0.0000e+00 - val_hits@10: 0.2386 - val_hits@100: 0.4773










	
classmethod from_config(config)

	Creates a layer from its config.

This method is the reverse of get_config,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights).


	Parameters

	config – A Python dictionary, typically the
output of get_config.



	Returns

	A layer instance.










	
get_config()

	Get the configuration hyper-parameters of the scoring based embedding model.






	
get_count(concept_type='e')

	Returns the count of entities and relations that were present during training.


	Parameters

	concept_type (str) – Indicates whether to count entities (concept_type='e') or
relations (concept_type='r') (default: ‘e’).



	Returns

	count – Count of the entities or relations.



	Return type

	int





Example

>>> from ampligraph.datasets import load_fb15k_237
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> X = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(X['train'],
>>>           batch_size=10000,
>>>           epochs=5,
>>>           verbose=False)
>>> print('Entities:', model.get_count('e'))
>>> print('Relations:', model.get_count('r'))
Entities: 14505
Relations: 237










	
get_emb_matrix_test(part_number=1, number_of_parts=1)

	Get the embedding matrix during evaluation.


	Parameters

	
	number (part) – Specifies which part to return from the number_of_parts in which the entire embedding matrix is split.


	number_of_parts (int) – Total number of parts in which to split the embedding matrix.






	Returns

	
	emb_matrix (np.array, shape (n,k)) – Part of the embedding matrix corresponding to part_number.


	start_index (int) – Original entity index (data dict) of the first row of the emb_matrix.


	end_index (int) – Original entity index (data dict) of the last row of the emb_matrix.















	
get_embeddings(entities, embedding_type='e')

	Get the embeddings of entities or relations.


Note

Use ampligraph.utils.create_tensorboard_visualizations() to visualize the embeddings with TensorBoard.




	Parameters

	
	entities (array-like, shape=(n)) – The entities (or relations) of interest. Element of the vector must be the original string literals, and
not internal IDs.


	embedding_type (str) – If ‘e’ is passed, entities argument will be considered as a list of knowledge graph entities
(i.e., nodes). If set to ‘r’, entities will be treated as relations instead.






	Returns

	embeddings – An array of k-dimensional embeddings.



	Return type

	ndarray, shape (n, k)





Example

>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.datasets import load_fb15k_237
>>> X = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(X['train'],
>>>           batch_size=10000,
>>>           epochs=5,
>>>           verbose=False)
>>> model.get_embeddings(['/m/027rn', '/m/06v8s0'], 'e')
array([[ 0.04482496  0.11973907  0.01117733 ... -0.13391922  0.11103553  -0.08132861]
 [-0.10158381  0.08108605 -0.07608676 ...  0.0591407  0.02791426  0.07559016]], dtype=float32)










	
get_focusE_params(dict_params={})

	Get parameters for focusE.


	Parameters

	dict_params (dict) – The following hyper-params can be passed:


	”non_linearity”: can assume of the following values “linear”, “softplus”, “sigmoid”, “tanh”.


	”stop_epoch”: specifies how long to decay (linearly) the structural influence hyper-parameter             from 1 until it reaches its original value.


	”structural_wt”: structural influence hyperparameter [0, 1] that modulates the influence of graph             topology.




If the respective key is missing: non_linearity="linear", stop_epoch=251 and structural_wt=0.001.





	Returns

	focusE_params – A tuple containing three values: the non-linearity function (str), the stop_epoch (int) and the
structure weight (float).



	Return type

	tuple










	
get_indexes(X, type_of='t', order='raw2ind')

	Converts given data to indexes or to raw data (according to order).


It works for X containing triples, entities, or relations.





	Parameters

	
	X (np.array or list) – Data to be indexed.


	type_of (str) – Specifies whether to get indexes/raw data for triples (type_of='t'), entities (type_of='e'),
or relations (type_of='r').


	order (str) – Specifies whether to get indexes from raw data (order='raw2ind') or
raw data from indexes (order='ind2raw').






	Returns

	Y – Indexed data or raw data.



	Return type

	np.array





Example

>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> from ampligraph.datasets import load_fb15k_237
>>> X = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(X['train'],
>>>           batch_size=10000,
>>>           epochs=5,
>>>           verbose=False)
>>> print(model.get_indexes(['/m/027rn', '/m/06v8s0'], 'e', 'raw2ind'))
>>> print(model.get_indexes([3877, 0], 'e', 'ind2raw'))
[0, 3877]
['/m/06v8s0', '/m/027rn']










	
get_invalid_keys(X: ndarray[Any, dtype[ScalarType]], data_type: Literal['raw', 'ind'] = 'raw', **kwargs)

	Get the invalid keys in a collection of triples.


	Parameters

	
	X (array) – Array with raw or indexed triples.


	data_type (str) – It specifies whether the triples contain raw data (e.g. URIs) (data_type="raw")
or indexes (data_type="ind").






	Returns

	
	invalid_subjects (array) – Array of size between 0 and the size of X, containing invalid subjects, if any.


	invalid_predicates (array) – Array of size between 0 and the size of X, containing invalid predicates, if any.


	invalid_objects (array) – Array of size between 0 and the size of X, containing invalid objects, if any.










Example

>>> X = np.array([['subj_a','foo','subj_c'],['rel_a','rel_b','bar'],['baz','obj_b','obj_c']])
>>> data_indexer.get_invalid_keys(X, data_type="raw")
(array(['foo'], dtype=str), array(['bar'], dtype=str), array(['baz'], dtype=str))










	
get_train_embedding_matrix_size()

	Returns the size of the embedding matrix used for training.

This may not be same as (n, k) during partitioned training (where n is the number of triples in the
whole training set).






	
is_fit()

	Check whether the model has been fitted already.






	
load_metadata(filepath=None, filedir=None)

	




	
load_weights(filepath)

	Loads the model weights.


Use this function if save_weights was used to save the model.


Note

If you want to continue training, you can use the ampligraph.utils.save_model() and
ampligraph.utils.load_model(). These functions save the entire state of the graph
which allows to continue the training from where it stopped.







	Parameters

	filepath (str) – Path to save the model.










	
make_calibrate_function()

	Similar to keras lib, this function returns the handle to the calibrate step function.

It processes one batch of data by iterating over the dataset iterator and computes the calibration
of predictions.


	Returns

	out – Handle to the calibration function.



	Return type

	Function handle










	
make_predict_function()

	Similar to keras lib, this function returns the handle to the predict step function.

It processes one batch of data by iterating over the dataset iterator and computes the prediction outputs.


	Returns

	out – Handle to the predict function.



	Return type

	Function handle










	
make_test_function()

	Similar to keras lib, this function returns the handle to test step function.

It processes one batch of data by iterating over the dataset iterator and computes the test metrics.


	Returns

	out – Handle to the test step function.



	Return type

	Function handle










	
make_train_function()

	Similar to keras lib, this function returns the handle to the training step function.
It processes one batch of data by iterating over the dataset iterator, it computes the loss and optimizes on it.


	Returns

	out – Handle to the training step function.



	Return type

	Function handle










	
partition_change_updates(num_ents, ent_emb, rel_emb)

	Perform the changes that are required when the partition is modified during training.


	Parameters

	
	num_ents (int) – Number of unique entities in the partition.


	ent_emb (array-like) – Entity embeddings that need to be trained for the partition
(all triples of the partition will have embeddings in this matrix).


	rel_emb (array-like) – relation embeddings that need to be trained for the partition
(all triples of the partition will have embeddings in this matrix).













	
perform_validation(validation_data, batch_size, use_filter, dataset_type, corrupt_side, entities_subset)

	Function to perform the validation.

It calls the evaluate function on the validation triples and
computes the metrics.






	
predict(x, batch_size=32, verbose=0, callbacks=None)

	Compute scores of the input triples.


	Parameters

	
	x (np.array, shape (n, 3) or str or GraphDataLoader or AbstractGraphPartitioner) – Data OR Filename of the data file OR Data Handle to be used for training.


	batch_size (int) – Batch size to use during training.
May be overridden if x is GraphDataLoader or AbstractGraphPartitioner instance


	verbose (bool) – Verbosity mode.


	callbacks (list of keras.callbacks.Callback instances) – List of callbacks to apply during evaluation.






	Returns

	scores – Score of the input triples.



	Return type

	np.array, shape (n, )





Example

>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> import numpy as np
>>> from ampligraph.datasets import load_fb15k_237
>>> X = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx',
>>>                                    seed=0)
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(X['train'],
>>>           batch_size=10000,
>>>           epochs=5)
Epoch 1/5
29/29 [==============================] - 7s 228ms/step - loss: 67361.2734
Epoch 2/5
29/29 [==============================] - 5s 184ms/step - loss: 67318.8203
Epoch 3/5
29/29 [==============================] - 5s 187ms/step - loss: 67021.1641
Epoch 4/5
29/29 [==============================] - 5s 188ms/step - loss: 65865.5547
Epoch 5/5
29/29 [==============================] - 5s 188ms/step - loss: 63510.2773





>>> pred = model.predict(X['test'],
>>>                      batch_size=100)
>>> print(np.sort(pred))
[-1.0868168  -0.46582496 -0.44715863 ...  3.2484274   3.3147712  3.326     ]










	
predict_proba(x, batch_size=32, verbose=0, callbacks=None)

	Compute calibrated scores (\(0 ≤ score ≤ 1\)) for the input triples.


	Parameters

	
	x (np.array, shape (n,3) or str or GraphDataLoader or AbstractGraphPartitioner) – Data OR Filename of the data file OR Data Handle to be used for training.


	batch_size (int) – Batch size to use during training.
May be overridden if x is GraphDataLoader or AbstractGraphPartitioner instance.


	verbose (bool) – Verbosity mode (default: False).


	callbacks (list of keras.callbacks.Callback instances) – List of callbacks to apply during evaluation.






	Returns

	scores – Calibrated scores for the input triples.



	Return type

	np.array, shape (n, )





Example

>>> from ampligraph.datasets import load_fb15k_237
>>> from ampligraph.latent_features import ScoringBasedEmbeddingModel
>>> import numpy as np
>>> dataset = load_fb15k_237()
>>> model = ScoringBasedEmbeddingModel(eta=5,
>>>                                    k=300,
>>>                                    scoring_type='ComplEx')
>>> model.compile(optimizer='adam', loss='nll')
>>> model.fit(dataset['train'],
>>>           batch_size=10000,
>>>           epochs=5)
>>> print('Raw scores (sorted):', np.sort(model.predict(dataset['test'])))
>>> print('Indices obtained by sorting (scores):', np.argsort(model.predict(dataset['test'])))
Raw scores (sorted): [-1.0384613  -0.46752608 -0.45149875 ...  3.2897844  3.3034315  3.3280635 ]
Indices obtained by sorting (scores): [ 3834 18634  4066 ...  1355 13633 10961]
>>> model.calibrate(dataset['test'],
>>>                 batch_size=10000,
>>>                 positive_base_rate=0.9,
>>>                 epochs=100)
>>> print('Calibrated scores (sorted):', np.sort(model.predict_proba(dataset['test'])))
>>> print('Indices obtained by sorting (Calibrated):', np.argsort(model.predict_proba(dataset['test'])))
Calibrated scores (sorted): [0.5553725  0.5556108  0.5568415  ... 0.6211011  0.62382233 0.6297585 ]
Indices obtained by sorting (Calibrated): [14573 11577  4404 ... 17817 17816   733]










	
predict_step(inputs)

	Returns the output of predict step on a batch of data.






	
predict_step_partitioning(inputs)

	Returns the output of predict step on a batch of data.






	
process_model_inputs_for_test(triples)

	Return the processed triples.


	Parameters

	triples (np.array) – Triples to be processed.



	Returns

	out_triples – In regular (non partitioned) mode, the triples are returned as they are given in input.
In case of partitioning, it returns the triple embeddings as a list of size 3, where each element
is a np.array of subjects, predicates and objects embeddings.



	Return type

	np.array or list










	
save(filepath, overwrite=True, include_optimizer=True, save_format=None, signatures=None, options=None, save_traces=True)

	Save the model.






	
save_metadata(filepath=None, filedir=None)

	Save metadata.






	
save_weights(filepath, overwrite=True)

	Save the trainable weights.


Use this function if the training process is complete and you want to
use the model only for inference. Use load_weights() to load the model weights back.


Note

If you want to be able of continuing the training, you can use the ampligraph.utils.save_model()
and ampligraph.utils.restore_model().These functions save and restore the entire state
of the graph, which allows to continue the training from where it was stopped.







	Parameters

	
	filepath (str) – Path to save the model.


	overwrite (bool) – Flag which indicates whether the model, if present, needs to be overwritten or not (default: True).













	
train_step(data)

	Training step.


	Parameters

	data (array-like, shape (n, m)) – Batch of input triples (true positives) with weights associated if m>3.



	Returns

	out – Dictionary of metrics computed on the outputs (e.g., loss).



	Return type

	dict










	
update_focusE_params()

	Update the structural weight after decay.












            

          

      

      

    

  

    
      
          
            
  
SelfAdversarialLoss


	
class ampligraph.latent_features.SelfAdversarialLoss(loss_params={}, verbose=False)

	Self Adversarial Sampling loss.

Introduced in [SDNT19].


\[\mathcal{L} = -log \left( \sigma(\gamma + f_{model} (\mathbf{s},\mathbf{o})) \right)
- \sum_{i=1}^{n} p(h'_{i}, r, t'_{i} ) \cdot log
\left( \sigma(-f_{model}(\mathbf{s}'_{i},\mathbf{o}'_{i}) - \gamma) \right)\]

where \(\mathbf{s}, \mathbf{o} \in \mathcal{R}^k\) are the embeddings of the subject
and object of a triple \(t=(s,r,o)\), \(\gamma \in \mathbb{R}\) is the margin, \(\sigma\) the sigmoid
function, and \(p(s'_{i}, r, o'_{i})\) is the negatives sampling distribution which is defined as:


\[p(s'_j, r, o'_j | \{(s_i, r_i, o_i)\}) = \frac{\exp \left( \alpha \, f_{model}(\mathbf{s'_j}, \mathbf{o'_j}) \right)}
{\sum_i \exp \left( \alpha \, f_{model}(\mathbf{s'_i}, \mathbf{o'_i}) \right)}\]

where \(\alpha\) is the temperature of sampling and \(f_{model}\) is the scoring function of
the desired embedding model.

Example

>>> import ampligraph.latent_features.loss_functions as lfs
>>> loss = lfs.SelfAdversarialLoss({'margin': 1, 'alpha': 0.1, 'reduction': 'mean'})
>>> isinstance(loss, lfs.SelfAdversarialLoss)
True





>>> loss = lfs.get('self_adversarial')
>>> isinstance(loss, lfs.SelfAdversarialLoss)
True





Attributes







	external_params

	



	name

	






Methods







	__init__([loss_params, verbose])

	Initialize the loss.







	
__init__(loss_params={}, verbose=False)

	Initialize the loss.


	Parameters

	loss_params (dict) – Dictionary of loss-specific hyperparams:


	”margin”: (float) - Margin to be used for loss computation (default: 1).


	”alpha”: (float) - Temperature of sampling (default: 0.5).


	”reduction”: (str) - Specifies whether to “sum” or take the “mean” of the loss per sample w.r.t.                 corruption (default: “sum”).




Example: loss_params={‘margin’: 1, ‘alpha’: 0.5}.


















            

          

      

      

    

  

    
      
          
            
  
CalibrationLayer


	
class ampligraph.latent_features.layers.calibration.CalibrationLayer(*args, **kwargs)

	Layer to calibrate the model outputs.

The class implements the heuristics described in [TC20],
using Platt scaling [].

See the docs of calibrate() for more details.

Attributes










Methods







	__init__([pos_size, neg_size, ...])

	



	build(input_shape)

	Build method.



	call(scores_pos[, scores_neg, training])

	Call method.



	get_config()

	Returns the config of the layer.







	
__init__(pos_size=0, neg_size=0, positive_base_rate=None, **kwargs)

	




	
build(input_shape)

	Build method.






	
call(scores_pos, scores_neg=[], training=0)

	Call method.






	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict
every time it is called. The callers should make a copy of the returned dict
if they want to modify it.


	Returns

	Python dictionary.
















            

          

      

      

    

  

    
      
          
            
  
CorruptionGenerationLayerTrain


	
class ampligraph.latent_features.layers.corruption_generation.CorruptionGenerationLayerTrain(*args, **kwargs)

	Generates corruptions during training.

The corruption might involve either subject or object using
entities sampled uniformly at random from the loaded graph.

Attributes










Methods







	__init__([seed])

	Initializes the corruption generation layer.



	call(pos, ent_size, eta)

	Generates corruption for the positives supplied.



	get_config()

	Returns the config of the layer.







	
__init__(seed=0, **kwargs)

	Initializes the corruption generation layer.


	Parameters

	eta (int) – Number of corruptions to generate.










	
call(pos, ent_size, eta)

	Generates corruption for the positives supplied.


	Parameters

	
	pos (array-like, shape (n, 3)) – Batch of input triples (positives).


	ent_size (int) – Number of unique entities present in the partition.






	Returns

	corruptions – Corruptions of the triples.



	Return type

	array-like, shape (n * eta, 3)










	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict
every time it is called. The callers should make a copy of the returned dict
if they want to modify it.


	Returns

	Python dictionary.
















            

          

      

      

    

  

    
      
          
            
  
EmbeddingLookupLayer


	
class ampligraph.latent_features.layers.encoding.EmbeddingLookupLayer(*args, **kwargs)

	Attributes







	max_ent_size

	Returns the size of the entity embedding matrix.



	max_rel_size

	Returns the size of relation embedding matrix.






Methods







	__init__(k[, max_ent_size, max_rel_size, ...])

	Initializes the embeddings of the model.



	build(input_shape)

	Builds the embedding lookup error.



	call(sample[, type_of])

	Looks up the embeddings of entities and relations of the triples.



	compute_output_shape(input_shape)

	Returns the output shape of outputs of call function.



	get_config()

	Returns the config of the layer.



	partition_change_updates(partition_ent_emb, ...)

	Perform the changes that are required when the partition is changed during training.



	set_ent_rel_initial_value(ent_init, rel_init)

	Sets the initial value of entity and relation embedding matrix.



	set_initializer(initializer)

	Set the initializer of the weights of this layer.



	set_regularizer(regularizer)

	Set the regularizer of the weights of this layer.







	
__init__(k, max_ent_size=None, max_rel_size=None, entity_kernel_initializer='glorot_uniform', entity_kernel_regularizer=None, relation_kernel_initializer='glorot_uniform', relation_kernel_regularizer=None, **kwargs)

	Initializes the embeddings of the model.


	Parameters

	
	k (int) – Embedding size.


	max_ent_size (int) – Max entities that can occur in any partition (default: None).


	max_rel_size (int) – Max relations that can occur in any partition (default: None).


	entity_kernel_initializer (str (name of objective function), objective function or) – 


	instance (tf.keras.initializers.Initializer) – An objective function is any callable with the signature init = fn(shape).
Initializer of the entity embeddings.


	entity_kernel_regularizer (str (name of objective function), objective function or) – 


	instance – An objective function is any callable with the signature init = fn(shape)
Initializer of the relation embeddings.


	relation_kernel_initializer (str or objective function or tf.keras.regularizers.Regularizer instance) – Regularizer of entity embeddings.


	relation_kernel_regularizer (str or objective function or tf.keras.regularizers.Regularizer instance) – Regularizer of relations embeddings.


	seed (int) – Random seed.













	
build(input_shape)

	Builds the embedding lookup error.

The trainable weights are created based on the hyperparams.






	
call(sample, type_of='t')

	Looks up the embeddings of entities and relations of the triples.


	Parameters

	
	sample (ndarray, shape (n, 3) or list) – Batch of input triples if a ndarray of shape (n,3) is given or a list
(of lists) of entities or relations or distances as specified in type_of.


	type_of (str) – Specifies whether we get in input triples or entities or relations.
Possible values are “t” for triples, “e” for entities, “r”
for relations and “d” for distances (useful in Nodepiece) (default: “t”).






	Returns

	emb_triples – List of embeddings of subjects, predicates, objects if type_of="t"
or a list of embeddings of entities (relations/distance) if type_of="e"
(type_of="r"/type_of="d").



	Return type

	list










	
compute_output_shape(input_shape)

	Returns the output shape of outputs of call function.


	Parameters

	input_shape (list) – Shape of inputs of call function.



	Returns

	output_shape – Shape of outputs of call function.



	Return type

	list










	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict
every time it is called. The callers should make a copy of the returned dict
if they want to modify it.


	Returns

	Python dictionary.










	
partition_change_updates(partition_ent_emb, partition_rel_emb)

	Perform the changes that are required when the partition is changed during training.


	Parameters

	
	batch_ent_emb – Entity embeddings that need to be trained for the partition
(all triples of the partition will have an embedding in this matrix).


	batch_rel_emb – Relation embeddings that need to be trained for the partition
(all triples of the partition will have an embedding in this matrix).













	
set_ent_rel_initial_value(ent_init, rel_init)

	Sets the initial value of entity and relation embedding matrix.

This function is mainly used during the partitioned training where the full embedding matrix is
initialized outside the model.






	
set_initializer(initializer)

	Set the initializer of the weights of this layer.


	Parameters

	initializer (str (name of objective function) or objective function or tf.keras.initializers.Initializer or list) – Initializer of the entity and relation embeddings. This is either a single value or a list of size 2.
If it is a single value, then both the entities and relations will be initialized based on
the same initializer. If it is a list, the first initializer will be used for entities and the second
for relations. Any callable with the signature init = fn(shape) can be interpreted as an objective
function.










	
set_regularizer(regularizer)

	Set the regularizer of the weights of this layer.


	Parameters

	regularizer (str (name of objective function) or objective function or tf.keras.regularizers.Regularizer instance or list) – Regularizer of the weights determining entity and relation embeddings.
If it is a single value, then both the entities and relations will be regularized based on
the same regularizer. If it is a list, the first regularizer will be used for entities and the second
for relations.
















            

          

      

      

    

  

    
      
          
            
  
AbstractScoringLayer


	
class ampligraph.latent_features.layers.scoring.AbstractScoringLayer.AbstractScoringLayer(*args, **kwargs)

	Abstract class for scoring layer.

Attributes










Methods







	__init__(k[, max_rel_size])

	Initializes the scoring layer.



	call(triples)

	Interface to the external world.



	compute_output_shape(input_shape)

	Returns the output shape of the outputs of the call function.



	get_config()

	Returns the config of the layer.



	get_ranks(triples, ent_matrix, start_ent_id, ...)

	Computes the ranks of triples against their corruptions.







	
__init__(k, max_rel_size=None)

	Initializes the scoring layer.


	Parameters

	
	k (int) – Embedding size.


	max_rel_size (int) – This value specifies the number of relations in the KG. It is
essential only for RotatE
scoring layer (default: None).













	
call(triples)

	Interface to the external world.
Computes the scores of the triples.


	Parameters

	triples (array-like, shape (n, 3)) – Batch of input triples.



	Returns

	scores – Tensor of scores of inputs.



	Return type

	tf.Tensor, shape (n,1)










	
compute_output_shape(input_shape)

	Returns the output shape of the outputs of the call function.


	Parameters

	input_shape (tuple) – Shape of inputs of call function.



	Returns

	output_shape – Shape of outputs of call function.



	Return type

	tuple










	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict
every time it is called. The callers should make a copy of the returned dict
if they want to modify it.


	Returns

	Python dictionary.










	
get_ranks(triples, ent_matrix, start_ent_id, end_ent_id, filters, mapping_dict, corrupt_side='s,o', comparison_type='worst')

	Computes the ranks of triples against their corruptions.

Ranks are computed by corrupting triple subject and/or object with the embeddings in ent_matrix.


	Parameters

	
	triples (array-like, shape (n, k)) – Batch of input embeddings.


	ent_matrix (array-like, shape (m, k)) – Slice of embedding matrix (corruptions).


	start_ent_id (int) – Original id of the first row of embedding matrix (used during partitioned approach).


	end_ent_id (int) – Original id of the last row of embedding matrix (used during partitioned approach).


	filters (list of lists) – Size of list is either 1 or 2 depending on corrupt_side.
Size of the internal list is equal to the size of the input triples.
Each list contains an array of filters (True Positives) related to the specified side of triples to corrupt.


	corrupt_side (str) – Which side to corrupt during evaluation.


	comparison_type (str) – Indicates how to break ties (default: worst, i.e., assigns the worst rank to the test triple).
One of the three types can be passed: “best”, “middle”, “worst”.






	Returns

	ranks – Ranks of triple against subject and object corruptions (corruptions defined by ent_embs matrix).



	Return type

	tf.Tensor, shape (n,2)
















            

          

      

      

    

  

    
      
          
            
  
ComplEx


	
class ampligraph.latent_features.layers.scoring.ComplEx(*args, **kwargs)

	Complex Embeddings (ComplEx) scoring layer.

The ComplEx model [TWR+16] is an extension of
the ampligraph.latent_features.DistMult bilinear diagonal model.

ComplEx scoring function is based on the trilinear Hermitian dot product in \(\mathbb{C}\):


\[f_{ComplEx}=Re(\langle \mathbf{r}_p, \mathbf{e}_s, \overline{\mathbf{e}_o}  \rangle)\]


Note

Since ComplEx embeddings belong to \(\mathbb{C}\), this model uses twice as many parameters as
ampligraph.latent_features.DistMult.



Attributes







	class_params

	



	external_params

	



	name

	






Methods







	__init__(k)

	Initializes the scoring layer.



	get_config()

	Returns the config of the layer.







	
__init__(k)

	Initializes the scoring layer.


	Parameters

	
	k (int) – Embedding size.


	max_rel_size (int) – This value specifies the number of relations in the KG. It is
essential only for RotatE
scoring layer (default: None).













	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict
every time it is called. The callers should make a copy of the returned dict
if they want to modify it.


	Returns

	Python dictionary.
















            

          

      

      

    

  

    
      
          
            
  
DistMult


	
class ampligraph.latent_features.layers.scoring.DistMult(*args, **kwargs)

	DistMult scoring layer.

The model as described in [YYH+14].

The bilinear diagonal DistMult model uses the trilinear dot product as scoring function:


\[f_{DistMult}=\langle \mathbf{r}_p, \mathbf{e}_s, \mathbf{e}_o \rangle\]

where \(\mathbf{e}_{s}\) is the embedding of the subject, \(\mathbf{r}_{p}\) the embedding
of the predicate and \(\mathbf{e}_{o}\) the embedding of the object.

Attributes







	class_params

	



	external_params

	



	name

	






Methods







	__init__(k)

	Initializes the scoring layer.



	get_config()

	Returns the config of the layer.







	
__init__(k)

	Initializes the scoring layer.


	Parameters

	
	k (int) – Embedding size.


	max_rel_size (int) – This value specifies the number of relations in the KG. It is
essential only for RotatE
scoring layer (default: None).













	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict
every time it is called. The callers should make a copy of the returned dict
if they want to modify it.


	Returns

	Python dictionary.
















            

          

      

      

    

  

    
      
          
            
  
HolE


	
class ampligraph.latent_features.layers.scoring.HolE(*args, **kwargs)

	Holographic Embeddings (HolE) scoring layer.

The HolE model [NRP+16] as re-defined by Hayashi et al. [HS17]:


\[f_{HolE}= \frac{2}{k} \, f_{ComplEx}\]

where \(k\) is the size of the embeddings.

Attributes







	class_params

	



	external_params

	



	name

	






Methods







	__init__(k)

	Initializes the scoring layer.



	get_config()

	Returns the config of the layer.







	
__init__(k)

	Initializes the scoring layer.


	Parameters

	
	k (int) – Embedding size.


	max_rel_size (int) – This value specifies the number of relations in the KG. It is
essential only for RotatE
scoring layer (default: None).













	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict
every time it is called. The callers should make a copy of the returned dict
if they want to modify it.


	Returns

	Python dictionary.
















            

          

      

      

    

  

    
      
          
            
  
TransE


	
class ampligraph.latent_features.layers.scoring.TransE(*args, **kwargs)

	Translating Embeddings (TransE) scoring layer.

The model as described in [BUGD+13].

The scoring function of TransE computes a similarity between the embedding of the subject
\(\mathbf{e}_{sub}\) translated by the embedding of the predicate \(\mathbf{e}_{pred}\),
and the embedding of the object \(\mathbf{e}_{obj}\),
using the \(L_1\) or \(L_2\) norm \(||\cdot||\) (default: \(L_1\)):


\[f_{TransE}=-||\mathbf{e}_{sub} + \mathbf{e}_{pred} - \mathbf{e}_{obj}||\]

Such scoring function is then used on positive and negative triples \(t^+, t^-\) in the loss function.

Attributes







	class_params

	



	external_params

	



	name

	






Methods







	__init__(k)

	Initializes the scoring layer.



	get_config()

	Returns the config of the layer.







	
__init__(k)

	Initializes the scoring layer.


	Parameters

	
	k (int) – Embedding size.


	max_rel_size (int) – This value specifies the number of relations in the KG. It is
essential only for RotatE
scoring layer (default: None).













	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict
every time it is called. The callers should make a copy of the returned dict
if they want to modify it.


	Returns

	Python dictionary.
















            

          

      

      

    

  

    
      
          
            
  
Loss


	
class ampligraph.latent_features.loss_functions.Loss(hyperparam_dict={}, verbose=False)

	Abstract class for the loss function.

Attributes







	class_params

	



	external_params

	



	metrics

	Per-output loss metrics.



	name

	






Methods







	__init__([hyperparam_dict, verbose])

	Initialize the loss..







	
__init__(hyperparam_dict={}, verbose=False)

	Initialize the loss..


	Parameters

	hyperparam_dict (dict) – Dictionary of hyperparams.


	”reduction”: (str) - Specifies whether to “sum” or take the “mean” of loss per sample w.r.t.                  corruptions (default: “sum”).




Other Keys are described in the hyperparameters section.


















            

          

      

      

    

  

    
      
          
            
  
Getting Started with AmpliGraph


NOTE:  An interactive version of this tutorial is available on Colab [https://colab.research.google.com/drive/1rylqOnm992AdP9z1aW8metlKpPuBTRGD].





Download the Jupyter notebook [https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/AmpliGraphBasicsTutorial.ipynb]




In this tutorial we will demonstrate how to use the AmpliGraph library.

Things we will cover:


	Exploration of a graph dataset


	Splitting graph datasets into train and test sets


	Training and Evaluation a Model


	Saving and restoring a model


	Predicting New Links


	Visualizing embeddings using Tensorboard





Requirements

A Python environment with the AmpliGraph library installed. Please follow the install guide [http://docs.ampligraph.org/en/latest/install.html].

Some sanity check:

import numpy as np
import pandas as pd
import ampligraph

ampligraph.__version__





'2.0-dev'







1. Dataset Exploration

First things first! Lets import the required libraries and retrieve some data.

In this tutorial we’re going to use the Game of Thrones knowledge Graph [https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/GoT.csv]. Please note: this isn’t the greatest dataset for demonstrating the power of knowledge graph embeddings, but is small, intuitive and should be familiar to most users.

We downloaded the neo4j graph published here [https://github.com/neo4j-examples/game-of-thrones]. Such dataset has been generated using these APIs [https://anapioficeandfire.com/]  which expose in a machine-readable fashion the content of open free sources such as A Wiki of Ice and Fire [http://awoiaf.westeros.org/]. We discarded all properties and saved all the directed, labeled relations in a plaintext file. Each relation (i.e. a triple) is in the form:

<subject, predicate, object>





The schema of the graph looks like this (image from neo4j-examples/game-of-thrones [https://github.com/neo4j-examples/game-of-thrones]):

[image: ]

Run the following cell to pull down the dataset and load it in memory with AmpliGraph load_from_csv() [http://docs.ampligraph.org/en/1.0.3/generated/ampligraph.datasets.load_from_csv.html#ampligraph.datasets.load_from_csv] utility function:

import requests
from ampligraph.datasets import load_from_csv

url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/GoT.csv'
open('GoT.csv', 'wb').write(requests.get(url).content)
X = load_from_csv('.', 'GoT.csv', sep=',')
X[:5, ]





array([['Smithyton', 'SEAT_OF', 'House Shermer of Smithyton'],
       ['House Mormont of Bear Island', 'LED_BY', 'Maege Mormont'],
       ['Margaery Tyrell', 'SPOUSE', 'Joffrey Baratheon'],
       ['Maron Nymeros Martell', 'ALLIED_WITH',
        'House Nymeros Martell of Sunspear'],
       ['House Gargalen of Salt Shore', 'IN_REGION', 'Dorne']],
      dtype=object)





Let’s list the subject and object entities found in the dataset…

entities = np.unique(np.concatenate([X[:, 0], X[:, 2]]))
entities





array(['Abelar Hightower', 'Acorn Hall', 'Addam Frey', ..., 'the Antlers',
       'the Paps', 'unnamed tower'], dtype=object)





… and all of the relationships that link them. Remember, these relationships only link some of the entities.

relations = np.unique(X[:, 1])
relations





array(['ALLIED_WITH', 'BRANCH_OF', 'FOUNDED_BY', 'HEIR_TO', 'IN_REGION',
       'LED_BY', 'PARENT_OF', 'SEAT_OF', 'SPOUSE', 'SWORN_TO'],
      dtype=object)







2. Defining Train and Test Datasets

As is typical in machine learning, we need to split our dataset into training and test (and sometimes validation) datasets.

When dealing with Knowledge Graphs, there is a major difference with the standard method of randomly sampling N points to make up our test set. Indeed, each of our data points are two entities linked by some relationship, and we need to ensure that all entities and relationships that are represented in the test set are present in the training set in at least one triple.

To accomplish this, AmpliGraph provides the train_test_split_no_unseen [https://docs.ampligraph.org/en/latest/generated/ampligraph.evaluation.train_test_split_no_unseen.html#train-test-split-no-unseen] function.

As an example, we will create a small test size that includes only 100 triples:

from ampligraph.evaluation import train_test_split_no_unseen 

X_train, X_test = train_test_split_no_unseen(X, test_size=100) 





Our data is now split into train/test sets. If we needed to further obtain a validation dataset, we can just repeat the same procedure on the test set (and adjusting the split percentages).

print('Train set size: ', X_train.shape)
print('Test set size: ', X_test.shape)





Train set size:  (3075, 3)
Test set size:  (100, 3)







3. Training a Model

AmpliGraph 2 has a unique class for defining several [https://docs.ampligraph.org/en/latest/ampligraph.latent_features.html#knowledge-graph-embedding-models] Knoweldge Graph Embedding models (TransE, ComplEx, DistMult, HolE), it sufficies to specify the different scoring type. Together with that, at initialization time, we also need to define some parameters:


	k : the dimensionality of the embedding space;


	eta ($\eta$) : the number of negatives (i.e., false triples) that must be generated at training runtime for each positive (i.e., true triple).




To begin with we are going to use the ComplEx [https://docs.ampligraph.org/en/latest/generated/ampligraph.latent_features.ComplEx.html#ampligraph.latent_features.ComplEx] model.

from ampligraph.latent_features import ScoringBasedEmbeddingModel
model = ScoringBasedEmbeddingModel(k=150,
                                   eta=5,
                                   scoring_type='ComplEx',
                                   seed=0)





Right after defining the model, it is time to compile the model, specifying:


	optimizer : we will use the Adam optimizer, with a learning rate of 1e-3, but AmpliGraph 2 supports any tf.keras.optimizers;


	loss : we will consider the pairwise loss, with a margin of 0.5 set via the loss_params kwarg. However, many other loss functions are supported, and custom losses can be defined by the user;


	regularizer : we will use the $L_p$ regularization with $p=2$, i.e. L2 regularization. The regularization parameter $\lambda$ = 1e-5 is set via the regularizer_params kwarg. Also in this case, tf.keras.regularizers are supported.


	initializer : we will use the Glorot Uniform initialization, but the tf.keras.initializers are supported.




from ampligraph.latent_features.loss_functions import get as get_loss
from ampligraph.latent_features.regularizers import get as get_regularizer
from tensorflow.keras.optimizers import Adam

optimizer = Adam(learning_rate=1e-3)
loss = get_loss('pairwise', {'margin': 0.5})
regularizer = get_regularizer('LP', {'p': 2, 'lambda': 1e-5})

model.compile(loss=loss,
              optimizer='adam',
              entity_relation_regularizer=regularizer,
              entity_relation_initializer='glorot_uniform')





AmpliGraph follows the tensorflow.keras style APIs, allowing, after compiling the model, to perform the main operations of the model with the fit, predict, and evaluate methods.


Fitting the Model

Once you run the next cell the model will start training.

On a modern laptop this should take ~3 minutes (although your mileage may vary, especially if you have changed any of the hyper-parameters above).

model.fit(X_train,
          batch_size=5000,
          epochs=200,
          verbose=True)





2023-02-08 23:06:27.469961: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz


Epoch 1/200


2023-02-08 23:06:28.230759: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.


2/2 [==============================] - 1s 668ms/step - loss: 7687.5562
Epoch 2/200
2/2 [==============================] - 0s 43ms/step - loss: 7683.3623
Epoch 3/200
2/2 [==============================] - 0s 48ms/step - loss: 7679.1382
Epoch 4/200
2/2 [==============================] - 0s 40ms/step - loss: 7674.8130
Epoch 5/200
2/2 [==============================] - 0s 48ms/step - loss: 7670.5405
Epoch 6/200
2/2 [==============================] - 0s 44ms/step - loss: 7666.1504
Epoch 7/200
2/2 [==============================] - 0s 41ms/step - loss: 7661.6445
Epoch 8/200
2/2 [==============================] - 0s 41ms/step - loss: 7657.1768
Epoch 9/200
2/2 [==============================] - 0s 46ms/step - loss: 7652.6147
Epoch 10/200
2/2 [==============================] - 0s 43ms/step - loss: 7647.9399
Epoch 11/200
2/2 [==============================] - 0s 41ms/step - loss: 7643.0947
Epoch 12/200
2/2 [==============================] - 0s 41ms/step - loss: 7638.1758
Epoch 13/200
2/2 [==============================] - 0s 48ms/step - loss: 7633.1064
Epoch 14/200
2/2 [==============================] - 0s 39ms/step - loss: 7627.8647
Epoch 15/200
2/2 [==============================] - 0s 39ms/step - loss: 7622.4819
Epoch 16/200
2/2 [==============================] - 0s 42ms/step - loss: 7616.9292
Epoch 17/200
2/2 [==============================] - 0s 44ms/step - loss: 7611.2173
Epoch 18/200
2/2 [==============================] - 0s 44ms/step - loss: 7605.2847
Epoch 19/200
2/2 [==============================] - 0s 40ms/step - loss: 7599.1416
Epoch 20/200
2/2 [==============================] - 0s 40ms/step - loss: 7592.7905
Epoch 21/200
2/2 [==============================] - 0s 46ms/step - loss: 7586.2324
Epoch 22/200
2/2 [==============================] - 0s 42ms/step - loss: 7579.4341
Epoch 23/200
2/2 [==============================] - 0s 40ms/step - loss: 7572.4092
Epoch 24/200
2/2 [==============================] - 0s 41ms/step - loss: 7565.1226
Epoch 25/200
2/2 [==============================] - 0s 47ms/step - loss: 7557.5513
Epoch 26/200
2/2 [==============================] - 0s 43ms/step - loss: 7549.6802
Epoch 27/200
2/2 [==============================] - 0s 40ms/step - loss: 7541.4810
Epoch 28/200
2/2 [==============================] - 0s 41ms/step - loss: 7533.0098
Epoch 29/200
2/2 [==============================] - 0s 43ms/step - loss: 7524.2012
Epoch 30/200
2/2 [==============================] - 0s 42ms/step - loss: 7515.0493
Epoch 31/200
2/2 [==============================] - 0s 40ms/step - loss: 7505.5547
Epoch 32/200
2/2 [==============================] - 0s 41ms/step - loss: 7495.6831
Epoch 33/200
2/2 [==============================] - 0s 44ms/step - loss: 7485.4292
Epoch 34/200
2/2 [==============================] - 0s 42ms/step - loss: 7474.8052
Epoch 35/200
2/2 [==============================] - 0s 41ms/step - loss: 7463.7358
Epoch 36/200
2/2 [==============================] - 0s 40ms/step - loss: 7452.2334
Epoch 37/200
2/2 [==============================] - 0s 47ms/step - loss: 7440.3193
Epoch 38/200
2/2 [==============================] - 0s 43ms/step - loss: 7427.9673
Epoch 39/200
2/2 [==============================] - 0s 40ms/step - loss: 7415.1470
Epoch 40/200
2/2 [==============================] - 0s 40ms/step - loss: 7401.8252
Epoch 41/200
2/2 [==============================] - 0s 47ms/step - loss: 7388.0103
Epoch 42/200
2/2 [==============================] - 0s 42ms/step - loss: 7373.6465
Epoch 43/200
2/2 [==============================] - 0s 40ms/step - loss: 7358.7339
Epoch 44/200
2/2 [==============================] - 0s 39ms/step - loss: 7343.2524
Epoch 45/200
2/2 [==============================] - 0s 46ms/step - loss: 7327.1968
Epoch 46/200
2/2 [==============================] - 0s 41ms/step - loss: 7310.5498
Epoch 47/200
2/2 [==============================] - 0s 40ms/step - loss: 7293.2598
Epoch 48/200
2/2 [==============================] - 0s 40ms/step - loss: 7275.4258
Epoch 49/200
2/2 [==============================] - 0s 47ms/step - loss: 7256.8550
Epoch 50/200
2/2 [==============================] - 0s 43ms/step - loss: 7237.6069
Epoch 51/200
2/2 [==============================] - 0s 39ms/step - loss: 7217.6772
Epoch 52/200
2/2 [==============================] - 0s 39ms/step - loss: 7197.0957
Epoch 53/200
2/2 [==============================] - 0s 45ms/step - loss: 7175.7148
Epoch 54/200
2/2 [==============================] - 0s 43ms/step - loss: 7153.5884
Epoch 55/200
2/2 [==============================] - 0s 40ms/step - loss: 7130.6948
Epoch 56/200
2/2 [==============================] - 0s 39ms/step - loss: 7106.9736
Epoch 57/200
2/2 [==============================] - 0s 46ms/step - loss: 7082.3877
Epoch 58/200
2/2 [==============================] - 0s 43ms/step - loss: 7056.9937
Epoch 59/200
2/2 [==============================] - 0s 40ms/step - loss: 7030.7690
Epoch 60/200
2/2 [==============================] - 0s 39ms/step - loss: 7003.6494
Epoch 61/200
2/2 [==============================] - 0s 48ms/step - loss: 6975.6445
Epoch 62/200
2/2 [==============================] - 0s 43ms/step - loss: 6946.6948
Epoch 63/200
2/2 [==============================] - 0s 40ms/step - loss: 6916.8398
Epoch 64/200
2/2 [==============================] - 0s 40ms/step - loss: 6885.9805
Epoch 65/200
2/2 [==============================] - 0s 47ms/step - loss: 6854.2222
Epoch 66/200
2/2 [==============================] - 0s 43ms/step - loss: 6821.4287
Epoch 67/200
2/2 [==============================] - 0s 40ms/step - loss: 6787.4209
Epoch 68/200
2/2 [==============================] - 0s 41ms/step - loss: 6752.3765
Epoch 69/200
2/2 [==============================] - 0s 46ms/step - loss: 6716.2451
Epoch 70/200
2/2 [==============================] - 0s 42ms/step - loss: 6678.9810
Epoch 71/200
2/2 [==============================] - 0s 40ms/step - loss: 6640.5068
Epoch 72/200
2/2 [==============================] - 0s 40ms/step - loss: 6600.8901
Epoch 73/200
2/2 [==============================] - 0s 48ms/step - loss: 6560.0127
Epoch 74/200
2/2 [==============================] - 0s 42ms/step - loss: 6517.9282
Epoch 75/200
2/2 [==============================] - 0s 40ms/step - loss: 6474.5786
Epoch 76/200
2/2 [==============================] - 0s 40ms/step - loss: 6429.9829
Epoch 77/200
2/2 [==============================] - 0s 44ms/step - loss: 6384.1543
Epoch 78/200
2/2 [==============================] - 0s 42ms/step - loss: 6337.0464
Epoch 79/200
2/2 [==============================] - 0s 39ms/step - loss: 6288.6187
Epoch 80/200
2/2 [==============================] - 0s 39ms/step - loss: 6238.8779
Epoch 81/200
2/2 [==============================] - 0s 46ms/step - loss: 6187.8340
Epoch 82/200
2/2 [==============================] - 0s 40ms/step - loss: 6135.7783
Epoch 83/200
2/2 [==============================] - 0s 37ms/step - loss: 6082.6733
Epoch 84/200
2/2 [==============================] - 0s 36ms/step - loss: 6028.7832
Epoch 85/200
2/2 [==============================] - 0s 38ms/step - loss: 5974.1294
Epoch 86/200
2/2 [==============================] - 0s 36ms/step - loss: 5919.1519
Epoch 87/200
2/2 [==============================] - 0s 31ms/step - loss: 5863.7749
Epoch 88/200
2/2 [==============================] - 0s 31ms/step - loss: 5808.1211
Epoch 89/200
2/2 [==============================] - 0s 34ms/step - loss: 5752.3843
Epoch 90/200
2/2 [==============================] - 0s 31ms/step - loss: 5696.8433
Epoch 91/200
2/2 [==============================] - 0s 29ms/step - loss: 5641.3433
Epoch 92/200
2/2 [==============================] - 0s 27ms/step - loss: 5586.2896
Epoch 93/200
2/2 [==============================] - 0s 30ms/step - loss: 5531.6914
Epoch 94/200
2/2 [==============================] - 0s 26ms/step - loss: 5477.6558
Epoch 95/200
2/2 [==============================] - 0s 25ms/step - loss: 5424.2500
Epoch 96/200
2/2 [==============================] - 0s 24ms/step - loss: 5371.4414
Epoch 97/200
2/2 [==============================] - 0s 26ms/step - loss: 5319.4209
Epoch 98/200
2/2 [==============================] - 0s 25ms/step - loss: 5268.1343
Epoch 99/200
2/2 [==============================] - 0s 22ms/step - loss: 5217.6074
Epoch 100/200
2/2 [==============================] - 0s 22ms/step - loss: 5167.8394
Epoch 101/200
2/2 [==============================] - 0s 22ms/step - loss: 5118.7812
Epoch 102/200
2/2 [==============================] - 0s 23ms/step - loss: 5070.6216
Epoch 103/200
2/2 [==============================] - 0s 21ms/step - loss: 5023.2554
Epoch 104/200
2/2 [==============================] - 0s 22ms/step - loss: 4976.6865
Epoch 105/200
2/2 [==============================] - 0s 23ms/step - loss: 4930.8843
Epoch 106/200
2/2 [==============================] - 0s 22ms/step - loss: 4885.9780
Epoch 107/200
2/2 [==============================] - 0s 21ms/step - loss: 4841.7085
Epoch 108/200
2/2 [==============================] - 0s 20ms/step - loss: 4798.2017
Epoch 109/200
2/2 [==============================] - 0s 21ms/step - loss: 4755.4863
Epoch 110/200
2/2 [==============================] - 0s 21ms/step - loss: 4713.4092
Epoch 111/200
2/2 [==============================] - 0s 20ms/step - loss: 4672.1030
Epoch 112/200
2/2 [==============================] - 0s 20ms/step - loss: 4631.4775
Epoch 113/200
2/2 [==============================] - 0s 21ms/step - loss: 4591.5752
Epoch 114/200
2/2 [==============================] - 0s 20ms/step - loss: 4552.3101
Epoch 115/200
2/2 [==============================] - 0s 20ms/step - loss: 4513.6792
Epoch 116/200
2/2 [==============================] - 0s 20ms/step - loss: 4475.6802
Epoch 117/200
2/2 [==============================] - 0s 20ms/step - loss: 4438.3237
Epoch 118/200
2/2 [==============================] - 0s 19ms/step - loss: 4401.5659
Epoch 119/200
2/2 [==============================] - 0s 19ms/step - loss: 4365.4551
Epoch 120/200
2/2 [==============================] - 0s 20ms/step - loss: 4329.9443
Epoch 121/200
2/2 [==============================] - 0s 20ms/step - loss: 4295.0410
Epoch 122/200
2/2 [==============================] - 0s 20ms/step - loss: 4260.6831
Epoch 123/200
2/2 [==============================] - 0s 19ms/step - loss: 4226.8403
Epoch 124/200
2/2 [==============================] - 0s 19ms/step - loss: 4193.5107
Epoch 125/200
2/2 [==============================] - 0s 20ms/step - loss: 4160.7246
Epoch 126/200
2/2 [==============================] - 0s 19ms/step - loss: 4128.4478
Epoch 127/200
2/2 [==============================] - 0s 19ms/step - loss: 4096.6489
Epoch 128/200
2/2 [==============================] - 0s 19ms/step - loss: 4065.3191
Epoch 129/200
2/2 [==============================] - 0s 19ms/step - loss: 4034.4797
Epoch 130/200
2/2 [==============================] - 0s 20ms/step - loss: 4004.1243
Epoch 131/200
2/2 [==============================] - 0s 20ms/step - loss: 3974.1709
Epoch 132/200
2/2 [==============================] - 0s 19ms/step - loss: 3944.7107
Epoch 133/200
2/2 [==============================] - 0s 19ms/step - loss: 3915.5930
Epoch 134/200
2/2 [==============================] - 0s 21ms/step - loss: 3886.9021
Epoch 135/200
2/2 [==============================] - 0s 19ms/step - loss: 3858.7039
Epoch 136/200
2/2 [==============================] - 0s 19ms/step - loss: 3830.8809
Epoch 137/200
2/2 [==============================] - 0s 20ms/step - loss: 3803.4395
Epoch 138/200
2/2 [==============================] - 0s 19ms/step - loss: 3776.4390
Epoch 139/200
2/2 [==============================] - 0s 20ms/step - loss: 3749.7639
Epoch 140/200
2/2 [==============================] - 0s 19ms/step - loss: 3723.4912
Epoch 141/200
2/2 [==============================] - 0s 19ms/step - loss: 3697.5691
Epoch 142/200
2/2 [==============================] - 0s 20ms/step - loss: 3672.0378
Epoch 143/200
2/2 [==============================] - 0s 20ms/step - loss: 3646.8630
Epoch 144/200
2/2 [==============================] - 0s 19ms/step - loss: 3621.9890
Epoch 145/200
2/2 [==============================] - 0s 20ms/step - loss: 3597.5039
Epoch 146/200
2/2 [==============================] - 0s 20ms/step - loss: 3573.3049
Epoch 147/200
2/2 [==============================] - 0s 20ms/step - loss: 3549.4644
Epoch 148/200
2/2 [==============================] - 0s 20ms/step - loss: 3525.8699
Epoch 149/200
2/2 [==============================] - 0s 21ms/step - loss: 3502.6682
Epoch 150/200
2/2 [==============================] - 0s 20ms/step - loss: 3479.8208
Epoch 151/200
2/2 [==============================] - 0s 20ms/step - loss: 3457.2893
Epoch 152/200
2/2 [==============================] - 0s 21ms/step - loss: 3435.0530
Epoch 153/200
2/2 [==============================] - 0s 20ms/step - loss: 3413.0737
Epoch 154/200
2/2 [==============================] - 0s 23ms/step - loss: 3391.3215
Epoch 155/200
2/2 [==============================] - 0s 21ms/step - loss: 3369.8508
Epoch 156/200
2/2 [==============================] - 0s 20ms/step - loss: 3348.6760
Epoch 157/200
2/2 [==============================] - 0s 23ms/step - loss: 3327.7073
Epoch 158/200
2/2 [==============================] - 0s 19ms/step - loss: 3307.0623
Epoch 159/200
2/2 [==============================] - 0s 19ms/step - loss: 3286.6704
Epoch 160/200
2/2 [==============================] - 0s 21ms/step - loss: 3266.4805
Epoch 161/200
2/2 [==============================] - 0s 22ms/step - loss: 3246.6299
Epoch 162/200
2/2 [==============================] - 0s 21ms/step - loss: 3227.0281
Epoch 163/200
2/2 [==============================] - 0s 20ms/step - loss: 3207.6719
Epoch 164/200
2/2 [==============================] - 0s 19ms/step - loss: 3188.4419
Epoch 165/200
2/2 [==============================] - 0s 20ms/step - loss: 3169.4727
Epoch 166/200
2/2 [==============================] - 0s 19ms/step - loss: 3150.6953
Epoch 167/200
2/2 [==============================] - 0s 20ms/step - loss: 3132.2092
Epoch 168/200
2/2 [==============================] - 0s 20ms/step - loss: 3113.9177
Epoch 169/200
2/2 [==============================] - 0s 20ms/step - loss: 3095.8491
Epoch 170/200
2/2 [==============================] - 0s 19ms/step - loss: 3077.9492
Epoch 171/200
2/2 [==============================] - 0s 19ms/step - loss: 3060.3206
Epoch 172/200
2/2 [==============================] - 0s 19ms/step - loss: 3042.8682
Epoch 173/200
2/2 [==============================] - 0s 20ms/step - loss: 3025.6821
Epoch 174/200
2/2 [==============================] - 0s 19ms/step - loss: 3008.5740
Epoch 175/200
2/2 [==============================] - 0s 19ms/step - loss: 2991.7039
Epoch 176/200
2/2 [==============================] - 0s 19ms/step - loss: 2975.0493
Epoch 177/200
2/2 [==============================] - 0s 18ms/step - loss: 2958.5591
Epoch 178/200
2/2 [==============================] - 0s 20ms/step - loss: 2942.2769
Epoch 179/200
2/2 [==============================] - 0s 19ms/step - loss: 2926.1487
Epoch 180/200
2/2 [==============================] - 0s 19ms/step - loss: 2910.1887
Epoch 181/200
2/2 [==============================] - 0s 19ms/step - loss: 2894.3938
Epoch 182/200
2/2 [==============================] - 0s 19ms/step - loss: 2878.7822
Epoch 183/200
2/2 [==============================] - 0s 19ms/step - loss: 2863.3167
Epoch 184/200
2/2 [==============================] - 0s 18ms/step - loss: 2848.0630
Epoch 185/200
2/2 [==============================] - 0s 19ms/step - loss: 2832.9565
Epoch 186/200
2/2 [==============================] - 0s 19ms/step - loss: 2817.9868
Epoch 187/200
2/2 [==============================] - 0s 19ms/step - loss: 2803.1804
Epoch 188/200
2/2 [==============================] - 0s 19ms/step - loss: 2788.5645
Epoch 189/200
2/2 [==============================] - 0s 19ms/step - loss: 2774.0742
Epoch 190/200
2/2 [==============================] - 0s 20ms/step - loss: 2759.7258
Epoch 191/200
2/2 [==============================] - 0s 19ms/step - loss: 2745.5208
Epoch 192/200
2/2 [==============================] - 0s 20ms/step - loss: 2731.5134
Epoch 193/200
2/2 [==============================] - 0s 20ms/step - loss: 2717.6428
Epoch 194/200
2/2 [==============================] - 0s 20ms/step - loss: 2703.9246
Epoch 195/200
2/2 [==============================] - 0s 19ms/step - loss: 2690.2976
Epoch 196/200
2/2 [==============================] - 0s 19ms/step - loss: 2676.8450
Epoch 197/200
2/2 [==============================] - 0s 19ms/step - loss: 2663.5295
Epoch 198/200
2/2 [==============================] - 0s 20ms/step - loss: 2650.3706
Epoch 199/200
2/2 [==============================] - 0s 19ms/step - loss: 2637.3049
Epoch 200/200
2/2 [==============================] - 0s 20ms/step - loss: 2624.3518





<tensorflow.python.keras.callbacks.History at 0x15fd63520>







Predicting with the Model

After having trained the model, we can use it to predict the score for any unseen triple given that its subject, relation and object were present in the training set.

model.predict(np.array([['Leyton Hightower', 'ALLIED_WITH', 'House Ryswell of the Rills']]))






array([0.09504332], dtype=float32)







Evaluating

Now it is time to evaluate our model on the test set to see how well it’s performing.

For this we are going to use the evaluate method, which takes as arguments:


	X_test : the data to evaluate on. We’re going to use our test set to evaluate.


	use_filter : whether to filter out the false negatives generated by the corruption strategy. If a dictionary is passed, the values of it are used as elements to filter.


	corrupt_side : specifies whether to corrupt subj and obj separately or to corrupt both during evaluation.




positives_filter = {'test' : np.concatenate([X_train, X_test])}
ranks = model.evaluate(X_test, 
                       use_filter=positives_filter,   # Corruption strategy filter defined above 
                       corrupt_side='s,o', # corrupt subj and obj separately while evaluating
                       verbose=True)





2023-02-09 15:57:55.492610: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.


5/5 [==============================] - 1s 297ms/step





The ranks returned by the evaluate_performance function indicate the rank at which the test set triple was found when performing link prediction using the model.



Metrics

Let’s compute some evaluate metrics and print them out.

We’re going to use the mrr_score (mean reciprocal rank) and hits_at_n_score functions.


	mrr_score:  The function computes the mean of the reciprocal of elements of a vector of rankings ranks.


	hits_at_n_score: The function computes how many elements of a vector of rankings ranks make it to the top n positions.




from ampligraph.evaluation import mr_score, mrr_score, hits_at_n_score

mrr = mrr_score(ranks)
print("MRR: %.2f" % (mrr))

hits_10 = hits_at_n_score(ranks, n=10)
print("Hits@10: %.2f" % (hits_10))
hits_3 = hits_at_n_score(ranks, n=3)
print("Hits@3: %.2f" % (hits_3))
hits_1 = hits_at_n_score(ranks, n=1)
print("Hits@1: %.2f" % (hits_1))





MRR: 0.26
Hits@10: 0.37
Hits@3: 0.28
Hits@1: 0.20





Now, how do we interpret those numbers?

Hits@N [http://docs.ampligraph.org/en/1.0.3/generated/ampligraph.evaluation.hits_at_n_score.html#ampligraph.evaluation.hits_at_n_score] indicates how many times in average a true triple was ranked in the top-N. Therefore, on average, we guessed the correct subject or object 53% of the time when considering the top-3 better ranked triples. The choice of which N makes more sense depends on the application.

The Mean Reciprocal Rank (MRR) [http://docs.ampligraph.org/en/latest/generated/ampligraph.evaluation.mrr_score.html] is another popular metrics to assess the predictive power of a model.




4.  Saving and Restoring a Model

Before we go any further, let’s save the best model found so that we can restore it in future.

from ampligraph.utils import save_model, restore_model





save_model(model, './best_model.pkl')





WARNING - Found untraced functions such as _get_ranks while saving (showing 1 of 1). These functions will not be directly callable after loading.





This will save the model in the ampligraph_tutorial directory as best_model.pkl.

We can then delete the model…

del model





.|.. and then restore it from disk! Ta-da!

model = restore_model('./best_model.pkl')





Saved model does not include a db file. Skipping.


2023-02-09 13:15:34.968306: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.
2023-02-09 13:15:34.990256: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.





And let’s just double check that the model we restored has been fit:

if model.is_fitted:
    print('The model is fit!')
else:
    print('The model is not fit! Did you skip a step?')





The model is fit!







5. Predicting New Links

Link prediction allows us to infer missing links in a graph. This has many real-world use cases, such as predicting connections between people in a social network, interactions between proteins in a biological network, and music recommendation based on prior user taste.

In our case, we’re going to see which of the following candidate statements (that we made up) are more likely to be true:

X_unseen = np.array([
    ['Jorah Mormont', 'SPOUSE', 'Daenerys Targaryen'],
    ['Tyrion Lannister', 'SPOUSE', 'Missandei'],
    ["King's Landing", 'SEAT_OF', 'House Lannister of Casterly Rock'],
    ['Sansa Stark', 'SPOUSE', 'Petyr Baelish'],
    ['Daenerys Targaryen', 'SPOUSE', 'Jon Snow'],
    ['Daenerys Targaryen', 'SPOUSE', 'Craster'],
    ['House Stark of Winterfell', 'IN_REGION', 'The North'],
    ['House Stark of Winterfell', 'IN_REGION', 'Dorne'],
    ['House Tyrell of Highgarden', 'IN_REGION', 'Beyond the Wall'],
    ['Brandon Stark', 'ALLIED_WITH', 'House Stark of Winterfell'],
    ['Brandon Stark', 'ALLIED_WITH', 'House Lannister of Casterly Rock'],    
    ['Rhaegar Targaryen', 'PARENT_OF', 'Jon Snow'],
    ['House Hutcheson', 'SWORN_TO', 'House Tyrell of Highgarden'],
    ['Daenerys Targaryen', 'ALLIED_WITH', 'House Stark of Winterfell'],
    ['Daenerys Targaryen', 'ALLIED_WITH', 'House Lannister of Casterly Rock'],
    ['Jaime Lannister', 'PARENT_OF', 'Myrcella Baratheon'],
    ['Robert I Baratheon', 'PARENT_OF', 'Myrcella Baratheon'],
    ['Cersei Lannister', 'PARENT_OF', 'Myrcella Baratheon'],
    ['Cersei Lannister', 'PARENT_OF', 'Brandon Stark'],
    ["Tywin Lannister", 'PARENT_OF', 'Jaime Lannister'],
    ["Missandei", 'SPOUSE', 'Grey Worm'],
    ["Brienne of Tarth", 'SPOUSE', 'Jaime Lannister']
])





positives_filter['test'] = np.vstack((positives_filter['test'], X_unseen))





ranks_unseen = model.evaluate(X_unseen,
                              use_filter=positives_filter,   # Corruption strategy filter defined above 
                              corrupt_side = 's+o',
                              verbose=True)





2023-02-09 13:19:35.033726: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.
2023-02-09 13:19:35.252684: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.


2/2 [==============================] - 1s 401ms/step





scores = model.predict(X_unseen)





2023-02-09 13:19:40.424379: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.





We transform the scores (real numbers) into probabilities (bound between 0 and 1) using the expit transform.

Note that the probabilities are not calibrated in any sense.

Advanced note: To calibrate the probabilities, one may use a procedure such as Platt scaling [https://en.wikipedia.org/wiki/Platt_scaling] or Isotonic regression [https://en.wikipedia.org/wiki/Isotonic_regression]. The challenge is to define what is a true triple and what is a false one, as the calibration of the probability of a triple being true depends on the base rate of positives and negatives.

from scipy.special import expit
probs = expit(scores)





pd.DataFrame(list(zip([' '.join(x) for x in X_unseen], 
                      ranks_unseen, 
                      np.squeeze(scores),
                      np.squeeze(probs))), 
             columns=['statement', 'rank', 'score', 'prob']).sort_values("score", ascending=False)
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Clustering and Classification using Knowledge Graph Embeddings


NOTE:  An interactive version of this tutorial is available on Colab [https://colab.research.google.com/drive/1QUphvcFvNsWyRZM_J5ahsLhEHJY4SjyS].




In this tutorial we will explore how to use the knowledge graph embeddings generated by a graph of international football matches (since the 19th century) in clustering and classification tasks. Knowledge graph embeddings are typically used for missing link prediction and knowledge discovery, but they can also be used for entity clustering, entity disambiguation, and other downstream tasks. The embeddings are a form of representation learning that allow linear algebra and machine learning to be applied to knowledge graphs, which otherwise would be difficult to do.

We will cover in this tutorial:


	Creating the knowledge graph (i.e. triples) from a tabular dataset of football matches


	Training the ComplEx embedding model on those triples


	Evaluating the quality of the embeddings on a validation set


	Clustering the embeddings, comparing to the natural clusters formed by the geographical continents


	Applying the embeddings as features in classification task, to predict match results


	Evaluating the predictive model on a out-of-time test set, comparing to a simple baseline




We will show that knowledge embedding clusters manage to capture implicit geographical information from the graph and that they can be a useful feature source for a downstream machine learning classification task, significantly increasing accuracy from the baseline.


Requirements

A Python environment with the AmpliGraph library installed. Please follow the install guide [http://docs.ampligraph.org/en/latest/install.html].

Some sanity check:

import numpy as np
import pandas as pd
import ampligraph

ampligraph.__version__





'2.0-dev'







Dataset

We will use the International football results from 1872 to 2019 [https://www.kaggle.com/martj42/international-football-results-from-1872-to-2017] available on Kaggle (public domain). It contains over 40 thousand international football matches. Each row contains the following information:


	Match date


	Home team name


	Away team name


	Home score (goals including extra time)


	Away score (goals including extra time)


	Tournament (whether it was a friendly match or part of a tournament)


	City where match took place


	Country where match took place


	Whether match was on neutral grounds




This dataset comes in a tabular format, therefore we will need to construct the knowledge graph ourselves.

import requests
url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/football_graph.csv'
open('football_results.csv', 'wb').write(requests.get(url).content)





3033782





df = pd.read_csv("football_results.csv").sort_values("date")
df.isna().sum()





date          0
home_team     0
away_team     0
home_score    2
away_score    2
tournament    0
city          0
country       0
neutral       0
dtype: int64





Dropping matches with unknown score:

df = df.dropna()





The training set will be from 1872 to 2014, while the test set will be from 2014 to present date. Note that a temporal test set makes any machine learning task harder compared to a random shuffle.

df["train"] = df.date < "2014-01-01"
df.train.value_counts()





True     35714
False     5057
Name: train, dtype: int64







Knowledge graph creation

We are going to create a knowledge graph from scratch based on the match information. The idea is that each match is an entity that will be connected to its participating teams, geography, characteristics, and results.

The objective is to generate a new representation of the dataset where each data point is an triple in the form:

<subject, predicate, object>





First we need to create the entities (subjects and objects) that will form the graph. We make sure teams and geographical information result in different entities (e.g. the Brazilian team and the corresponding country will be different).

# Entities naming
df["match_id"] = df.index.values.astype(str)
df["match_id"] =  "Match" + df.match_id
df["city_id"] = "City" + df.city.str.title().str.replace(" ", "")
df["country_id"] = "Country" + df.country.str.title().str.replace(" ", "")
df["home_team_id"] = "Team" + df.home_team.str.title().str.replace(" ", "")
df["away_team_id"] = "Team" + df.away_team.str.title().str.replace(" ", "")
df["tournament_id"] = "Tournament" + df.tournament.str.title().str.replace(" ", "")
df["neutral"] = df.neutral.astype(str)





Then, we create the actual triples based on the relationship between the entities. We do it only for the triples in the training set (before 2014).

triples = []
for _, row in df[df["train"]].iterrows():
    # Home and away information
    home_team = (row["home_team_id"], "isHomeTeamIn", row["match_id"])
    away_team = (row["away_team_id"], "isAwayTeamIn", row["match_id"])
    
    # Match results
    if row["home_score"] > row["away_score"]:
        score_home = (row["home_team_id"], "winnerOf", row["match_id"])
        score_away = (row["away_team_id"], "loserOf", row["match_id"])
    elif row["home_score"] < row["away_score"]:
        score_away = (row["away_team_id"], "winnerOf", row["match_id"])
        score_home = (row["home_team_id"], "loserOf", row["match_id"])
    else:
        score_home = (row["home_team_id"], "draws", row["match_id"])
        score_away = (row["away_team_id"], "draws", row["match_id"])
    home_score = (row["match_id"], "homeScores", np.clip(int(row["home_score"]), 0, 5))
    away_score = (row["match_id"], "awayScores", np.clip(int(row["away_score"]), 0, 5))
    
    # Match characteristics
    tournament = (row["match_id"], "inTournament", row["tournament_id"])
    city = (row["match_id"], "inCity", row["city_id"])
    country = (row["match_id"], "inCountry", row["country_id"])
    neutral = (row["match_id"], "isNeutral", row["neutral"])
    year = (row["match_id"], "atYear", row["date"][:4])
    
    triples.extend((home_team, away_team, score_home, score_away, 
                    tournament, city, country, neutral, year, home_score, away_score))





Note that we treat some literals (year, neutral match, home score, away score) as discrete entities and they will be part of the final knowledge graph used to generate the embeddings. We limit the number of score entities by clipping the score to be at most 5.

Below we provide a visualization of a subset of the graph related to the infamous Maracanazo [https://en.wikipedia.org/wiki/Uruguay_v_Brazil_(1950_FIFA_World_Cup)]:

[image: Football graph]

The whole graph related to this match can be summarised by the triples below:

triples_df = pd.DataFrame(triples, columns=["subject", "predicate", "object"])
triples_df[(triples_df.subject=="Match3129") | (triples_df.object=="Match3129")]
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