

    
      
          
            
  
AmpliGraph

Open source Python library that predicts links between concepts in a knowledge graph.

Go to the GitHub repository [https://github.com/Accenture/AmpliGraph/] [image: ImageLink] [https://github.com/Accenture/AmpliGraph/]





Join the conversation on Slack [https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg] [image: ImageLink2] [https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg>]





AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning
that deals with supervised learning on knowledge graphs.

[image: _images/kg_lp.png]
Use AmpliGraph if you need to:


	Discover new knowledge from an existing knowledge graph.


	Complete large knowledge graphs with missing statements.


	Generate stand-alone knowledge graph embeddings.


	Develop and evaluate a new relational model.




AmpliGraph’s machine learning models generate knowledge graph embeddings, vector representations of concepts in a metric space:

[image: _images/kg_lp_step1.png]
It then combines embeddings with model-specific scoring functions to predict unseen and novel links:

[image: _images/kg_lp_step2.png]

Key Features


	Intuitive APIs: AmpliGraph APIs are designed to reduce the code amount required to learn models that predict links in knowledge graphs.


	GPU-Ready: AmpliGraph is based on TensorFlow, and it is designed to run seamlessly on CPU and GPU devices - to speed-up training.


	Extensible: Roll your own knowledge graph embeddings model by extending AmpliGraph base estimators.







Modules

AmpliGraph includes the following submodules:


	Datasets: helper functions to load datasets (knowledge graphs).


	Models: knowledge graph embedding models. AmpliGraph contains TransE, DistMult, ComplEx, HolE, ConvE, ConvKB (More to come!)


	Evaluation: metrics and evaluation protocols to assess the predictive power of the models.


	Discovery: High-level convenience APIs for knowledge discovery (discover new facts, cluster entities, predict near duplicates).







How to Cite

If you like AmpliGraph and you use it in your project, why not starring the project on GitHub [https://github.com/Accenture/AmpliGraph/]!

[image: GitHub stars] [https://github.com/Accenture/AmpliGraph/stargazers/]

If you instead use AmpliGraph in an academic publication, cite as:

@misc{ampligraph,
  author= {Luca Costabello and
           Sumit Pai and
           Chan Le Van and
           Rory McGrath and
           Nick McCarthy and
           Pedro Tabacof},
  title = {{AmpliGraph: a Library for Representation Learning on Knowledge Graphs}},
  month = mar,
  year  = 2019,
  doi   = {10.5281/zenodo.2595043},
  url   = {https://doi.org/10.5281/zenodo.2595043}
}
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Installation


Prerequisites


	Linux, macOS, Windows


	Python ≥ 3.6





Provision a Virtual Environment

Create and activate a virtual environment (conda)

conda create --name ampligraph python=3.7
source activate ampligraph








Install TensorFlow

AmpliGraph is built on TensorFlow 1.x.
Install from pip or conda:

CPU-only

pip install "tensorflow>=1.14.0,<2.0"

or 

conda install tensorflow'>=1.14.0,<2.0.0'





GPU support

pip install "tensorflow-gpu>=1.14.0,<2.0"

or 

conda install tensorflow-gpu'>=1.14.0,<2.0.0'










Install AmpliGraph

Install the latest stable release from pip:

pip install ampligraph





If instead you want the most recent development version, you can clone the repository
and install from source as below (also see the How to Contribute guide for details):

git clone https://github.com/Accenture/AmpliGraph.git
cd AmpliGraph
git checkout develop
pip install -e .








Sanity Check

>> import ampligraph
>> ampligraph.__version__
'1.3.1'











          

      

      

    

  

    
      
          
            
  
Background

Knowledge graphs are graph-based knowledge bases whose facts are modeled as relationships between entities. Knowledge graph research led to broad-scope graphs such as DBpedia [ABK+07], WordNet [Pri10], and YAGO [SKW07].
Countless domain-specific knowledge graphs have also been published on the web, giving birth to the so-called Web of Data [BHBL11].

Formally, a knowledge graph \(\mathcal{G}=\{ (sub,pred,obj)\} \subseteq \mathcal{E} \times \mathcal{R} \times  \mathcal{E}\)
is a set of \((sub,pred,obj)\) triples, each including a subject \(sub \in \mathcal{E}\),
a predicate \(pred \in \mathcal{R}\), and an object \(obj \in \mathcal{E}\).
\(\mathcal{E}\) and \(\mathcal{R}\) are the sets of all entities and relation types of \(\mathcal{G}\).

Knowledge graph embedding models are neural architectures that encode concepts from a knowledge graph (i.e. entities \(\mathcal{E}\) and relation types \(\mathcal{R}\)) into low-dimensional, continuous vectors \(\in \mathcal{R}^k\). Such textit{knowledge graph embeddings} have applications in knowledge graph completion, entity resolution, and link-based clustering, just to cite a few [NMTG16].
Knowledge graph embeddings are learned by training a neural architecture over a graph. Although such architectures vary, the training phase always consists in minimizing a loss function \(\mathcal{L}\) that includes a scoring function \(f_{m}(t)\), i.e. a model-specific function that assigns a score to a triple \(t=(sub,pred,obj)\)
.

The goal of the optimization procedure is learning optimal embeddings, such that the scoring function is able to assign high scores to positive statements and low scores to statements unlikely to be true.
Existing models propose scoring functions that combine the embeddings \(\mathbf{e}_{sub},\mathbf{e}_{pred}, \mathbf{e}_{obj} \in \mathcal{R}^k\) of the subject, predicate, and object of triple \(t=(sub,pred,obj)\) using different intuitions: TransE [BUGD+13] relies on distances, DistMult [YYH+14] and ComplEx [TWR+16] are bilinear-diagonal models, HolE [NRP+16] uses circular correlation. While the above models can be interpreted as multilayer perceptrons, others such as ConvE include convolutional layers [DMSR18].

As example, the scoring function of TransE computes a similarity between the embedding of the subject \(\mathbf{e}_{sub}\) translated by the embedding of the predicate \(\mathbf{e}_{pred}\) and the embedding of the object \(\mathbf{e}_{obj}\), using the \(L_1\) or \(L_2\) norm \(||\cdot||\):


\[f_{TransE}=-||\mathbf{e}_{sub} + \mathbf{e}_{pred} - \mathbf{e}_{obj}||_n\]

Such scoring function is then used on positive and negative triples \(t^+, t^-\) in the loss function. This can be for example a pairwise margin-based loss, as shown in the equation below:


\[\mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}}\sum_{t^- \in \mathcal{N}}max(0, [\gamma + f_{m}(t^-;\Theta) - f_{m}(t^+;\Theta)])\]

where \(\Theta\) are the embeddings learned by the model, \(f_{m}\) is the model-specific scoring function, \(\gamma \in \mathcal{R}\) is the margin and \(\mathcal{N}\) is a set of negative triples generated with a corruption heuristic [BUGD+13].





          

      

      

    

  

    
      
          
            
  
API

AmpliGraph includes the following submodules:



	Datasets

	Models

	Evaluation

	Discovery

	Utils









          

      

      

    

  

    
      
          
            
  
Datasets

Helper functions to load knowledge graphs.


Note

It is recommended to set the AMPLIGRAPH_DATA_HOME environment variable:

export AMPLIGRAPH_DATA_HOME=/YOUR/PATH/TO/datasets





When attempting to load a dataset, the module will first check if AMPLIGRAPH_DATA_HOME is set.
If it is, it will search this location for the required dataset.
If the dataset is not found it will be downloaded and placed in this directory.

If AMPLIGRAPH_DATA_HOME has not been set the databases will be saved in the following directory:

~/ampligraph_datasets








Benchmark Datasets Loaders

Use these helpers functions to load datasets used in graph representation learning literature.
The functions will automatically download the datasets if they are not present in ~/ampligraph_datasets or
at the location set in AMPLIGRAPH_DATA_HOME.







	load_fb15k_237([check_md5hash, …])

	Load the FB15k-237 dataset



	load_wn18rr([check_md5hash, clean_unseen, …])

	Load the WN18RR dataset



	load_yago3_10([check_md5hash, clean_unseen, …])

	Load the YAGO3-10 dataset



	load_fb15k([check_md5hash, add_reciprocal_rels])

	Load the FB15k dataset



	load_wn18([check_md5hash, add_reciprocal_rels])

	Load the WN18 dataset



	load_wn11([check_md5hash, clean_unseen, …])

	Load the WordNet11 (WN11) dataset



	load_fb13([check_md5hash, clean_unseen, …])

	Load the Freebase13 (FB13) dataset






Datasets Summary











	Dataset

	Train

	Valid

	Test

	Entities

	Relations





	FB15K-237

	272,115

	17,535

	20,466

	14,541

	237



	WN18RR

	86,835

	3,034

	3,134

	40,943

	11



	FB15K

	483,142

	50,000

	59,071

	14,951

	1,345



	WN18

	141,442

	5,000

	5,000

	40,943

	18



	YAGO3-10

	1,079,040

	5,000

	5,000

	123,182

	37



	WN11

	110,361

	5,215

	21,035

	38,194

	11



	FB13

	316,232

	11,816

	47,464

	75,043

	13







Warning

WN18 and FB15k include a large number of inverse relations, and its use in experiments has been deprecated.
Use WN18RR and FB15K-237 instead.




Warning

FB15K-237’s validation set contains 8 unseen entities over 9 triples. The test set has 29 unseen entities,
distributed over 28 triples. WN18RR’s validation set contains 198 unseen entities over 210 triples. The test set
has 209 unseen entities, distributed over 210 triples.




Note

WN11 and FB13 also provide true and negative labels for the triples in the validation and tests sets.
In both cases the positive base rate is close to 50%.






Loaders for Custom Knowledge Graphs

Functions to load custom knowledge graphs from disk.







	load_from_csv(directory_path, file_name[, …])

	Load a knowledge graph from a csv file



	load_from_ntriples(folder_name, file_name[, …])

	Load RDF ntriples



	load_from_rdf(folder_name, file_name[, …])

	Load an RDF file







Hint

AmpliGraph includes a helper function to split a generic knowledge graphs into training,
validation, and test sets. See ampligraph.evaluation.train_test_split_no_unseen().









          

      

      

    

  

    
      
          
            
  
Models


Knowledge Graph Embedding Models







	RandomBaseline([seed, verbose])

	Random baseline



	TransE([k, eta, epochs, batches_count, …])

	Translating Embeddings (TransE)



	DistMult([k, eta, epochs, batches_count, …])

	The DistMult model



	ComplEx([k, eta, epochs, batches_count, …])

	Complex embeddings (ComplEx)



	HolE([k, eta, epochs, batches_count, seed, …])

	Holographic Embeddings



	ConvE([k, eta, epochs, batches_count, seed, …])

	Convolutional 2D KG Embeddings



	ConvKB([k, eta, epochs, batches_count, …])

	Convolution-based model







Anatomy of a Model

Knowledge graph embeddings are learned by training a neural architecture over a graph. Although such architectures vary,
the training phase always consists in minimizing a loss function \(\mathcal{L}\) that includes a
scoring function \(f_{m}(t)\), i.e. a model-specific function that assigns a score to a triple \(t=(sub,pred,obj)\).

AmpliGraph models include the following components:


	Scoring function \(f(t)\)


	Loss function \(\mathcal{L}\)


	Optimization algorithm


	Negatives generation strategy




AmpliGraph comes with a number of such components. They can be used in any combination to come up with a model that
performs sufficiently well for the dataset of choice.

AmpliGraph features a number of abstract classes that can be extended to design new models:







	EmbeddingModel([k, eta, epochs, …])

	Abstract class for embedding models



	Loss(eta, hyperparam_dict[, verbose])

	Abstract class for loss function.



	Regularizer(hyperparam_dict[, verbose])

	Abstract class for Regularizer.



	Initializer([initializer_params, verbose, seed])

	Abstract class for initializer .











Scoring functions

Existing models propose scoring functions that combine the embeddings
\(\mathbf{e}_{s},\mathbf{r}_{p}, \mathbf{e}_{o} \in \mathcal{R}^k\) of the subject, predicate,
and object of a triple \(t=(s,p,o)\) according to different intuitions:


	TransE [BUGD+13] relies on distances. The scoring function computes a similarity between the embedding of the subject translated by the embedding of the predicate  and the embedding of the object, using the \(L_1\) or \(L_2\) norm \(||\cdot||\):





\[f_{TransE}=-||\mathbf{e}_{s} + \mathbf{r}_{p} - \mathbf{e}_{o}||_n\]


	DistMult [YYH+14] uses the trilinear dot product:





\[f_{DistMult}=\langle \mathbf{r}_p, \mathbf{e}_s, \mathbf{e}_o \rangle\]


	ComplEx [TWR+16] extends DistMult with the Hermitian dot product:





\[f_{ComplEx}=Re(\langle \mathbf{r}_p, \mathbf{e}_s, \overline{\mathbf{e}_o}  \rangle)\]


	HolE [NRP+16] uses circular correlation (denoted by \(\otimes\)):





\[f_{HolE}=\mathbf{w}_r \cdot (\mathbf{e}_s \otimes \mathbf{e}_o) = \frac{1}{k}\mathcal{F}(\mathbf{w}_r)\cdot( \overline{\mathcal{F}(\mathbf{e}_s)} \odot \mathcal{F}(\mathbf{e}_o))\]


	ConvE [DMSR18] uses convolutional layers (\(g\) is a non-linear activation function, \(\ast\) is the linear convolution operator, \(vec\) indicates 2D reshaping):





\[f_{ConvE} =  \langle \sigma \, (vec \, ( g \, ([ \overline{\mathbf{e}_s} ; \overline{\mathbf{r}_p} ] \ast \Omega )) \, \mathbf{W} )) \, \mathbf{e}_o\rangle\]


	ConvKB [NNNP18] uses convolutional layers and a dot product:





\[f_{ConvKB}= concat \,(g \, ([\mathbf{e}_s, \mathbf{r}_p, \mathbf{e}_o]) * \Omega)) \cdot W\]




Loss Functions

AmpliGraph includes a number of loss functions commonly used in literature.
Each function can be used with any of the implemented models. Loss functions are passed to models as hyperparameter,
and they can be thus used during model selection.







	PairwiseLoss(eta[, loss_params, verbose])

	Pairwise, max-margin loss.



	AbsoluteMarginLoss(eta[, loss_params, verbose])

	Absolute margin , max-margin loss.



	SelfAdversarialLoss(eta[, loss_params, verbose])

	Self adversarial sampling loss.



	NLLLoss(eta[, loss_params, verbose])

	Negative log-likelihood loss.



	NLLMulticlass(eta[, loss_params, verbose])

	Multiclass NLL Loss.



	BCELoss(eta[, loss_params, verbose])

	Binary Cross Entropy Loss.









Regularizers

AmpliGraph includes a number of regularizers that can be used with the loss function.
LPRegularizer supports L1, L2, and L3.







	LPRegularizer([regularizer_params, verbose])

	Performs LP regularization









Initializers

AmpliGraph includes a number of initializers that can be used to initialize the embeddings. They can be passed as hyperparameter,
and they can be thus used during model selection.







	RandomNormal([initializer_params, verbose, seed])

	Initializes from a normal distribution with specified mean and std



	RandomUniform([initializer_params, verbose, …])

	Initializes from a uniform distribution with specified low and high



	Xavier([initializer_params, verbose, seed])

	Follows the xavier strategy for initialization of layers [GB10].









Optimizers

The goal of the optimization procedure is learning optimal embeddings, such that the scoring function is able to
assign high scores to positive statements and low scores to statements unlikely to be true.

We support SGD-based optimizers provided by TensorFlow, by setting the optimizer argument in a model initializer.
Best results are currently obtained with Adam.




Saving/Restoring Models

Models can be saved and restored from disk. This is useful to avoid re-training a model.

More details in the utils module.







          

      

      

    

  

    
      
          
            
  
Evaluation

The module includes performance metrics for neural graph embeddings models, along with model selection routines,
negatives generation, and an implementation of the learning-to-rank-based evaluation protocol used in literature.


Metrics

Learning-to-rank metrics to evaluate the performance of neural graph embedding models.







	rank_score(y_true, y_pred[, pos_lab])

	Rank of a triple



	mrr_score(ranks)

	Mean Reciprocal Rank (MRR)



	mr_score(ranks)

	Mean Rank (MR)



	hits_at_n_score(ranks, n)

	Hits@N









Negatives Generation

Negatives generation routines. These are corruption strategies based on the Local Closed-World Assumption (LCWA).







	generate_corruptions_for_eval(X, …[, …])

	Generate corruptions for evaluation.



	generate_corruptions_for_fit(X[, …])

	Generate corruptions for training.









Evaluation & Model Selection

Functions to evaluate the predictive power of knowledge graph embedding models, and routines for model selection.







	evaluate_performance(X, model[, …])

	Evaluate the performance of an embedding model.



	select_best_model_ranking(model_class, …)

	Model selection routine for embedding models via either grid search or random search.









Helper Functions

Utilities and support functions for evaluation procedures.







	train_test_split_no_unseen(X[, test_size, …])

	Split into train and test sets.



	create_mappings(X)

	Create string-IDs mappings for entities and relations.



	to_idx(X, ent_to_idx, rel_to_idx)

	Convert statements (triples) into integer IDs.












          

      

      

    

  

    
      
          
            
  
Discovery

This module includes a number of functions to perform knowledge discovery in graph embeddings.

Functions provided include discover_facts which will generate candidate statements using one of several
defined strategies and return triples that perform well when evaluated against corruptions, find_clusters which
will perform link-based cluster analysis on a knowledge graph, find_duplicates which will find duplicate entities
in a graph based on their embeddings, and query_topn which when given two elements of a triple will return
the top_n results of all possible completions ordered by predicted score.







	discover_facts(X, model[, top_n, strategy, …])

	Discover new facts from an existing knowledge graph.



	find_clusters(X, model[, …])

	Perform link-based cluster analysis on a knowledge graph.



	find_duplicates(X, model[, mode, metric, …])

	Find duplicate entities, relations or triples in a graph based on their embeddings.



	query_topn(model[, top_n, head, relation, …])

	Queries the model with two elements of a triple and returns the top_n results of all possible completions ordered by score predicted by the model.










          

      

      

    

  

    
      
          
            
  
Utils

This module contains utility functions for neural knowledge graph embedding models.


Saving/Restoring Models

Models can be saved and restored from disk. This is useful to avoid re-training a model.







	save_model(model[, model_name_path])

	Save a trained model to disk.



	restore_model([model_name_path])

	Restore a saved model from disk.









Visualization

Functions to visualize embeddings.







	create_tensorboard_visualizations(model, loc)

	Export embeddings to Tensorboard.









Others

Function to convert a pandas DataFrame with headers into triples.







	dataframe_to_triples(X, schema)

	Convert DataFrame into triple format.












          

      

      

    

  

    
      
          
            
  
How to Contribute


Git Repo and Issue Tracking

[image: _images/AmpliGraph.svg] [https://GitHub.com/Accenture/AmpliGraph/stargazers/]

AmpliGraph repository is available on GitHub [https://github.com/Accenture/AmpliGraph].

A list of open issues is available here [https://github.com/Accenture/AmpliGraph/issues].

Join the conversation on Slack [https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg]
[image: _images/slack_logo.png]




How to Contribute

We welcome community contributions, whether they are new models, tests, or documentation.

You can contribute to AmpliGraph in many ways:


	Raise a bug report [https://github.com/Accenture/AmpliGraph/issues/new?assignees=&labels=&template=bug_report.md&title=]


	File a feature request [https://github.com/Accenture/AmpliGraph/issues/new?assignees=&labels=&template=feature_request.md&title=]


	Help other users by commenting on the issue tracking system [https://github.com/Accenture/AmpliGraph/issues]


	Add unit tests


	Improve the documentation


	Add a new graph embedding model (see below)







Adding Your Own Model

The landscape of knowledge graph embeddings evolves rapidly.
We welcome new models as a contribution to AmpliGraph, which has been built to provide a shared codebase to guarantee a
fair evalaution and comparison acros models.

You can add your own model by raising a pull request.

To get started, read the documentation on how current models have been implemented.




Developer Notes

Additional documentation on data adapters, AmpliGraph support for large graphs, and further technical details
is available here.




Clone and Install in editable mode

Clone the repository and checkout the develop branch.
Install from source with pip. use the -e flag to enable editable mode [https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs]:

git clone https://github.com/Accenture/AmpliGraph.git
git checkout develop
cd AmpliGraph
pip install -e .








Unit Tests

To run all the unit tests:

$ pytest tests





See pytest documentation [https://docs.pytest.org/en/latest/] for additional arguments.




Documentation

The project documentation [https://docs.ampligraph.org] is based on Sphinx and can be built on your local working
copy as follows:

cd docs
make clean autogen html





The above generates an HTML version of the documentation under docs/_built/html.




Packaging

To build an AmpliGraph custom wheel, do the following:

pip wheel --wheel-dir dist --no-deps .











          

      

      

    

  

    
      
          
            
  
Examples

These examples show how to get started with AmpliGraph APIs, and cover a range of useful tasks.
Note that additional tutorials are also available.


Train and evaluate an embedding model

import numpy as np
from ampligraph.datasets import load_wn18
from ampligraph.latent_features import ComplEx
from ampligraph.evaluation import evaluate_performance, mrr_score, hits_at_n_score

def main():

    # load Wordnet18 dataset:
    X = load_wn18()

    # Initialize a ComplEx neural embedding model with pairwise loss function:
    # The model will be trained for 300 epochs.
    model = ComplEx(batches_count=10, seed=0, epochs=20, k=150, eta=10,
                    # Use adam optimizer with learning rate 1e-3
                    optimizer='adam', optimizer_params={'lr':1e-3},
                    # Use pairwise loss with margin 0.5
                    loss='pairwise', loss_params={'margin':0.5},
                    # Use L2 regularizer with regularizer weight 1e-5
                    regularizer='LP', regularizer_params={'p':2, 'lambda':1e-5}, 
                    # Enable stdout messages (set to false if you don't want to display)
                    verbose=True)

    # For evaluation, we can use a filter which would be used to filter out 
    # positives statements created by the corruption procedure.
    # Here we define the filter set by concatenating all the positives
    filter = np.concatenate((X['train'], X['valid'], X['test']))
    
    # Fit the model on training and validation set
    model.fit(X['train'], 
              early_stopping = True,
              early_stopping_params = \
                      {
                          'x_valid': X['valid'],       # validation set
                          'criteria':'hits10',         # Uses hits10 criteria for early stopping
                          'burn_in': 100,              # early stopping kicks in after 100 epochs
                          'check_interval':20,         # validates every 20th epoch
                          'stop_interval':5,           # stops if 5 successive validation checks are bad.
                          'x_filter': filter,          # Use filter for filtering out positives 
                          'corruption_entities':'all', # corrupt using all entities
                          'corrupt_side':'s+o'         # corrupt subject and object (but not at once)
                      }
              )

    

    # Run the evaluation procedure on the test set (with filtering). 
    # To disable filtering: filter_triples=None
    # Usually, we corrupt subject and object sides separately and compute ranks
    ranks = evaluate_performance(X['test'], 
                                 model=model, 
                                 filter_triples=filter,
                                 use_default_protocol=True, # corrupt subj and obj separately while evaluating
                                 verbose=True)

    # compute and print metrics:
    mrr = mrr_score(ranks)
    hits_10 = hits_at_n_score(ranks, n=10)
    print("MRR: %f, Hits@10: %f" % (mrr, hits_10))
    # Output: MRR: 0.886406, Hits@10: 0.935000

if __name__ == "__main__":
    main()








Model selection

from ampligraph.datasets import load_wn18
from ampligraph.latent_features import ComplEx
from ampligraph.evaluation import select_best_model_ranking

def main():

    # load Wordnet18 dataset:
    X_dict = load_wn18()

    model_class = ComplEx

    # Use the template given below for doing grid search. 
    param_grid = {
                     "batches_count": [10],
                     "seed": 0,
                     "epochs": [4000],
                     "k": [100, 50],
                     "eta": [5,10],
                     "loss": ["pairwise", "nll", "self_adversarial"],
                     # We take care of mapping the params to corresponding classes
                     "loss_params": {
                         #margin corresponding to both pairwise and adverserial loss
                         "margin": [0.5, 20], 
                         #alpha corresponding to adverserial loss
                         "alpha": [0.5]
                     },
                     "embedding_model_params": {
                         # generate corruption using all entities during training
                         "negative_corruption_entities":"all"
                     },
                     "regularizer": [None, "LP"],
                     "regularizer_params": {
                         "p": [2],
                         "lambda": [1e-4, 1e-5]
                     },
                     "optimizer": ["adam"],
                     "optimizer_params":{
                         "lr": [0.01, 0.0001]
                     },
                     "verbose": True
                 }

    # Train the model on all possibile combinations of hyperparameters.
    # Models are validated on the validation set.
    # It returnes a model re-trained on training and validation sets.
    best_model, best_params, best_mrr_train, \
    ranks_test, mrr_test = select_best_model_ranking(model_class, # Class handle of the model to be used
                                                     # Dataset 
                                                     X_dict['train'],
                                                     X_dict['valid'],
                                                     X_dict['test'],          
                                                     # Parameter grid
                                                     param_grid,      
                                                     # Use filtered set for eval
                                                     use_filter=True, 
                                                     # corrupt subject and objects separately during eval
                                                     use_default_protocol=True, 
                                                     # Log all the model hyperparams and evaluation stats
                                                     verbose=True)
    print(type(best_model).__name__, best_params, best_mrr_train, mrr_test)

if __name__ == "__main__":
    main()








Get the embeddings

import numpy as np
from ampligraph.latent_features import ComplEx

model = ComplEx(batches_count=1, seed=555, epochs=20, k=10)
X = np.array([['a', 'y', 'b'],
              ['b', 'y', 'a'],
              ['a', 'y', 'c'],
              ['c', 'y', 'a'],
              ['a', 'y', 'd'],
              ['c', 'y', 'd'],
              ['b', 'y', 'c'],
              ['f', 'y', 'e']])
model.fit(X)
model.get_embeddings(['f','e'], embedding_type='entity')








Save and restore a model

import numpy as np
from ampligraph.latent_features import ComplEx
from ampligraph.utils import save_model, restore_model

model = ComplEx(batches_count=2, seed=555, epochs=20, k=10)

X = np.array([['a', 'y', 'b'],
            ['b', 'y', 'a'],
            ['a', 'y', 'c'],
            ['c', 'y', 'a'],
            ['a', 'y', 'd'],
            ['c', 'y', 'd'],
            ['b', 'y', 'c'],
            ['f', 'y', 'e']])

model.fit(X)

#  Use the trained model to predict 
y_pred_before = model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
print(y_pred_before)
#[-0.29721245, 0.07865551]

# Save the model
example_name = "helloworld.pkl"
save_model(model, model_name_path = example_name)

# Restore the model
restored_model = restore_model(model_name_path = example_name)

# Use the restored model to predict
y_pred_after = restored_model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]))
print(y_pred_after)
# [-0.29721245, 0.07865551]








Split dataset into train/test or train/valid/test

import numpy as np
from ampligraph.evaluation import train_test_split_no_unseen
from ampligraph.datasets import load_from_csv

'''
Assume we have a knowledge graph stored in my_folder/my_graph.csv,
and that the content of such file is:

a,y,b
f,y,e
b,y,a
a,y,c
c,y,a
a,y,d
c,y,d
b,y,c
f,y,e
'''

# Load the graph in memory
X = load_from_csv('my_folder', 'my_graph.csv', sep=',')

# To split the graph in train and test sets:
# (In this toy example the test set will include only two triples)
X_train, X_test = train_test_split_no_unseen(X, test_size=2)

print(X_train)

'''
X_train:[['a' 'y' 'b']
         ['f' 'y' 'e']
         ['b' 'y' 'a']
         ['c' 'y' 'a']
         ['c' 'y' 'd']
         ['b' 'y' 'c']
         ['f' 'y' 'e']]
'''

print(X_test)

'''
X_test: [['a' 'y' 'c']
         ['a' 'y' 'd']]
'''


# To split the graph in train, validation, and test the method must be called twice:
X_train_valid, X_test = train_test_split_no_unseen(X, test_size=2)
X_train, X_valid = train_test_split_no_unseen(X_train_valid, test_size=2)

print(X_train)
'''
X_train:  [['a' 'y' 'b']
           ['b' 'y' 'a']
           ['c' 'y' 'd']
           ['b' 'y' 'c']
           ['f' 'y' 'e']]
'''

print(X_valid)
'''
X_valid:  [['f' 'y' 'e']
           ['c' 'y' 'a']]
'''

print(X_test)
'''
X_test:  [['a' 'y' 'c']
          ['a' 'y' 'd']]
'''








Clustering and projectings embeddings into 2D space


Embedding training

import numpy as np
import pandas as pd
import requests

from ampligraph.datasets import load_from_csv
from ampligraph.latent_features import ComplEx
from ampligraph.evaluation import evaluate_performance
from ampligraph.evaluation import mr_score, mrr_score, hits_at_n_score
from ampligraph.evaluation import train_test_split_no_unseen

# International football matches triples
url = 'https://ampligraph.s3-eu-west-1.amazonaws.com/datasets/football.csv'
open('football.csv', 'wb').write(requests.get(url).content)
X = load_from_csv('.', 'football.csv', sep=',')[:, 1:]

# Train test split
X_train, X_test = train_test_split_no_unseen(X, test_size=10000)

# ComplEx model
model = ComplEx(batches_count=50,
                epochs=300,
                k=100,
                eta=20,
                optimizer='adam',
                optimizer_params={'lr':1e-4},
                loss='multiclass_nll',
                regularizer='LP',
                regularizer_params={'p':3, 'lambda':1e-5},
                seed=0,
                verbose=True)

model.fit(X_train)








Embedding evaluation

filter_triples = np.concatenate((X_train, X_test))
ranks = evaluate_performance(X_test,
                             model=model,
                             filter_triples=filter_triples,
                             use_default_protocol=True,
                             verbose=True)

mr = mr_score(ranks)
mrr = mrr_score(ranks)

print("MRR: %.2f" % (mrr))
print("MR: %.2f" % (mr))

hits_10 = hits_at_n_score(ranks, n=10)
print("Hits@10: %.2f" % (hits_10))
hits_3 = hits_at_n_score(ranks, n=3)
print("Hits@3: %.2f" % (hits_3))
hits_1 = hits_at_n_score(ranks, n=1)
print("Hits@1: %.2f" % (hits_1))
'''
MRR: 0.25
MR: 4927.33
Hits@10: 0.35
Hits@3: 0.28
Hits@1: 0.19
'''








Clustering and 2D projections

Please install lib adjustText first with pip install adjustText.
For incf.countryutils, do the following steps:

git clone https://github.com/wyldebeast-wunderliebe/incf.countryutils.git
cd incf.countryutils
pip install .





incf.countryutils is used to map countries to the corresponding continents.

import re
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
from adjustText import adjust_text
from incf.countryutils import transformations
from ampligraph.discovery import find_clusters

# Get the teams entities and their corresponding embeddings
triples_df = pd.DataFrame(X, columns=['s', 'p', 'o'])
teams = triples_df.s[triples_df.s.str.startswith('Team')].unique()
team_embeddings = dict(zip(teams, model.get_embeddings(teams)))
team_embeddings_array = np.array([i for i in team_embeddings.values()])

# Project embeddings into 2D space via PCA
embeddings_2d = PCA(n_components=2).fit_transform(team_embeddings_array)

# Cluster embeddings (on the original space)
clustering_algorithm = KMeans(n_clusters=6, n_init=100, max_iter=500, random_state=0)
clusters = find_clusters(teams, model, clustering_algorithm, mode='entity')

# This function maps country to continent
def cn_to_ctn(country):
    try:
        original_name = ' '.join(re.findall('[A-Z][^A-Z]*', country[4:]))
        return transformations.cn_to_ctn(original_name)
    except KeyError:
        return "unk"

plot_df = pd.DataFrame({"teams": teams,
                        "embedding1": embeddings_2d[:, 0],
                        "embedding2": embeddings_2d[:, 1],
                        "continent": pd.Series(teams).apply(cn_to_ctn),
                        "cluster": "cluster" + pd.Series(clusters).astype(str)})

# Top 20 teams in 2019 according to FIFA rankings
top20teams = ["TeamBelgium", "TeamFrance", "TeamBrazil", "TeamEngland", "TeamPortugal",
              "TeamCroatia", "TeamSpain", "TeamUruguay", "TeamSwitzerland", "TeamDenmark",
              "TeamArgentina", "TeamGermany", "TeamColombia", "TeamItaly", "TeamNetherlands",
              "TeamChile", "TeamSweden", "TeamMexico", "TeamPoland", "TeamIran"]

np.random.seed(0)

# Plot 2D embeddings with country labels
def plot_clusters(hue):
    plt.figure(figsize=(12, 12))
    plt.title("{} embeddings".format(hue).capitalize())
    ax = sns.scatterplot(data=plot_df[plot_df.continent!="unk"],
                         x="embedding1", y="embedding2", hue=hue)
    texts = []
    for i, point in plot_df.iterrows():
        if point["teams"] in top20teams or np.random.random() < 0.1:
            texts.append(plt.text(point['embedding1']+0.02,
                         point['embedding2']+0.01,
                         str(point["teams"])))
    adjust_text(texts)








Results visualization

plot_clusters("continent")
plot_clusters("cluster")





[image: Continent embeddings]
[image: Cluster embeddings]









          

      

      

    

  

    
      
          
            
  
Tutorials

The following Jupyter notebooks will guide you through the most important features of AmpliGraph:


	AmpliGraph basics: training, saving and restoring a model, evaluating a model,
discover new links, visualize embeddings.
[Jupyter notebook [https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/AmpliGraphBasicsTutorial.ipynb]]
[Colab notebook [https://colab.research.google.com/drive/1rylqOnm992AdP9z1aW8metlKpPuBTRGD]]


	Link-based clustering and classification: how to use the
knowledge embeddings generated by a graph of international football matches in clustering and classification tasks.
[Jupyter notebook [https://github.com/Accenture/AmpliGraph/blob/master/docs/tutorials/ClusteringAndClassificationWithEmbeddings.ipynb]]
[Colab notebook [https://colab.research.google.com/drive/1QUphvcFvNsWyRZM_J5ahsLhEHJY4SjyS]]




Additional examples and code snippets are available here.





          

      

      

    

  

    
      
          
            
  
Performance


Predictive Performance

We report the filtered MR, MRR, Hits@1,3,10 for the most common datasets used in literature.


Note

On ConvE Evaluation.
Results reported in the literature for ConvE are based on the alternative 1-N evaluation protocol which requires
that reciprocal relations are added to the dataset [DMSR18]:


\[D \leftarrow (D, D_{recip})\]


\[D_{recip} \leftarrow \{ \, (o, p_r, s) \,|\, \forall x \in D, x = (s, p, o) \}\]

During training each unique pair of subject and predicate can predict all possible object scores for that pairs, and
therefore object corruptions evaluation can be performed with a single forward pass:


\[ConvE(s, p, o)\]

In the standard corruption procedure the subject entity is replaced by corruptions:


\[ConvE(s_{corr}, p, o),\]

However in the 1-N protocol subject corruptions are interpreted as object corruptions of the reciprocal relation:


\[ConvE(o, p_r, s_{corr})\]

To reproduce the results reported in the literature using the 1-N evaluation protocol, add reciprocal relations by
specifying add_reciprocal_rels in the dataset loader function, e.g. load_fb15k(add_reciprocal_rels=True),
and run the evaluation protocol with object corruptions by specifying corrupt_sides='o'.

Results obtained with the standard evaluation protocol are labeled ConvE, while those obtained with the 1-N
protocol are marked ConvE(1-N).






FB15K-237












	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	208

	0.31

	0.22

	0.35

	0.50

	k: 400;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:
norm: 1;
normalize_ent_emb: false;
seed: 0;
batches_count: 64;



	DistMult

	199

	0.31

	0.22

	0.35

	0.49

	k: 300;
epochs: 4000;
eta: 50;
loss: multiclass_nll;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
optimizer: adam;
optimizer_params:
lr: 0.00005;
seed: 0;
batches_count: 50;
normalize_ent_emb: false;



	ComplEx

	184

	0.32

	0.23

	0.35

	0.50

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 0.00005;
seed: 0;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
batches_count: 64;



	HolE

	184

	0.31

	0.22

	0.34

	0.49

	k: 350;
epochs: 4000;
eta: 50;
loss: multiclass_nll;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
optimizer: adam;
optimizer_params:
lr: 0.0001;
seed: 0;
batches_count: 64;



	ConvKB

	327

	0.23

	0.15

	0.25

	0.40

	k: 200;
epochs: 500;
eta: 10;
loss: multiclass_nll;
loss_params: {}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
num_filters: 32,
filter_sizes: 1,
dropout: 0.1};
seed: 0;
batches_count: 300;



	ConvE

	1060

	0.26

	0.19

	0.28

	0.38

	k: 200;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 100;



	ConvE(1-N)

	234

	0.32

	0.23

	0.35

	0.50

	k: 200;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 100;







Note

FB15K-237 validation and test sets include triples with entities that do not occur
in the training set. We found 8 unseen entities in the validation set and 29 in the test set.
In the experiments we excluded the triples where such entities appear (9 triples in from the validation
set and 28 from the test set).






WN18RR












	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	2692

	0.22

	0.03

	0.37

	0.54

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 0.0001;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
seed: 0;
normalize_ent_emb: false;
embedding_model_params:
norm: 1;
batches_count: 150;



	DistMult

	5531

	0.47

	0.43

	0.48

	0.53

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 0.0001;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
seed: 0;
normalize_ent_emb: false;
batches_count: 100;



	ComplEx

	4177

	0.51

	0.46

	0.53

	0.58

	k: 200;
epochs: 4000;
eta: 20;
loss: multiclass_nll;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
regularizer: LP;
regularizer_params:
lambda: 0.05;
p: 3;
batches_count: 10;



	HolE

	7028

	0.47

	0.44

	0.48

	0.53

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 50;



	ConvKB

	3652

	0.39

	0.33

	0.42

	0.48

	k: 200;
epochs: 500;
eta: 10;
loss: multiclass_nll;
loss_params: {}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
num_filters: 32,
filter_sizes: 1,
dropout: 0.1};
seed: 0;
batches_count: 300;



	ConvE

	5346

	0.45

	0.42

	0.47

	0.52

	k: 200;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 100;



	ConvE(1-N)

	4842

	0.48

	0.45

	0.49

	0.54

	k: 200;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 100;







Note

WN18RR validation and test sets include triples with entities that do not occur
in the training set. We found 198 unseen entities in the validation set and 209 in the test set.
In the experiments we excluded the triples where such entities appear (210 triples in from the validation
set and 210 from the test set).






YAGO3-10












	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	1264

	0.51

	0.41

	0.57

	0.67

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 0.0001;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 2;
embedding_model_params:
norm: 1;
normalize_ent_emb: false;
seed: 0;
batches_count: 100;



	DistMult

	1107

	0.50

	0.41

	0.55

	0.66

	k: 350;
epochs: 4000;
eta: 50;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 5e-05;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
seed: 0;
normalize_ent_emb: false;
batches_count: 100;



	ComplEx

	1227

	0.49

	0.40

	0.54

	0.66

	k: 350;
epochs: 4000;
eta: 30;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 5e-05;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
seed: 0;
batches_count: 100



	HolE

	6776

	0.50

	0.42

	0.56

	0.65

	k: 350;
epochs: 4000;
eta: 30;
loss: self_adversarial;
loss_params:
alpha: 1;
margin: 0.5;
optimizer: adam;
optimizer_params:
lr: 0.0001;
seed: 0;
batches_count: 100



	ConvKB

	2820

	0.30

	0.21

	0.34

	0.50

	k: 200;
epochs: 500;
eta: 10;
loss: multiclass_nll;
loss_params: {}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
num_filters: 32,
filter_sizes: 1,
dropout: 0.1};
seed: 0;
batches_count: 3000;



	ConvE

	6063

	0.40

	0.33

	0.42

	0.53

	k: 300;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 300;



	ConvE(1-N)

	2741

	0.55

	0.48

	0.60

	0.69

	k: 300;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 300;







Note

YAGO3-10 validation and test sets include triples with entities that do not occur
in the training set. We found 22 unseen entities in the validation set and 18 in the test set.
In the experiments we excluded the triples where such entities appear (22 triples in from the validation
set and 18 from the test set).






FB15K


Warning

The dataset includes a large number of inverse relations, and its use in experiments has been deprecated.
Use FB15k-237 instead.














	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	44

	0.63

	0.50

	0.73

	0.85

	k: 150;
epochs: 4000;
eta: 10;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 5e-5;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
embedding_model_params:
norm: 1;
normalize_ent_emb: false;
seed: 0;
batches_count: 100;



	DistMult

	179

	0.78

	0.74

	0.82

	0.86

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
normalize_ent_emb: false;
batches_count: 50;



	ComplEx

	184

	0.80

	0.76

	0.82

	0.86

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 100;



	HolE

	216

	0.80

	0.76

	0.83

	0.87

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 50;



	ConvKB

	331

	0.65

	0.55

	0.71

	0.82

	k: 200;
epochs: 500;
eta: 10;
loss: multiclass_nll;
loss_params: {}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
num_filters: 32,
filter_sizes: 1,
dropout: 0.1};
seed: 0;
batches_count: 300;



	ConvE

	385

	0.50

	0.42

	0.52

	0.66

	k: 300;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 100;



	ConvE(1-N)

	55

	0.80

	0.74

	0.84

	0.89

	k: 300;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 100;









WN18


Warning

The dataset includes a large number of inverse relations, and its use in experiments has been deprecated.
Use WN18RR instead.














	Model

	MR

	MRR

	Hits@1

	Hits@3

	Hits@10

	Hyperparameters





	TransE

	260

	0.66

	0.44

	0.88

	0.95

	k: 150;
epochs: 4000;
eta: 10;
loss: multiclass_nll;
optimizer: adam;
optimizer_params:
lr: 5e-5;
regularizer: LP;
regularizer_params:
lambda: 0.0001;
p: 3;
embedding_model_params:
norm: 1;
normalize_ent_emb: false;
seed: 0;
batches_count: 100;



	DistMult

	675

	0.82

	0.73

	0.92

	0.95

	k: 200;
epochs: 4000;
eta: 20;
loss: nll;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
normalize_ent_emb: false;
batches_count: 50;



	ComplEx

	726

	0.94

	0.94

	0.95

	0.95

	k: 200;
epochs: 4000;
eta: 20;
loss: nll;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 50;



	HolE

	665

	0.94

	0.93

	0.94

	0.95

	k: 200;
epochs: 4000;
eta: 20;
loss: self_adversarial;
loss_params:
margin: 1;
optimizer: adam;
optimizer_params:
lr: 0.0005;
seed: 0;
batches_count: 50;



	ConvKB

	331

	0.80

	0.69

	0.90

	0.94

	k: 200;
epochs: 500;
eta: 10;
loss: multiclass_nll;
loss_params: {}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
num_filters: 32,
filter_sizes: 1,
dropout: 0.1};
seed: 0;
batches_count: 300;



	ConvE

	492

	0.93

	0.91

	0.94

	0.95

	k: 300;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 100;



	ConvE(1-N)

	436

	0.95

	0.93

	0.95

	0.95

	k: 300;
epochs: 4000;
loss: bce;
loss_params: {label_smoothing=0.1}
optimizer: adam;
optimizer_params:
lr: 0.0001;
embedding_model_params:{
conv_filters: 32,
conv_kernel_size: 3,
dropout_embed: 0.2,
dropout_conv: 0.1,
dropout_dense: 0.3,
use_batchnorm: True,
use_bias: True};
seed: 0;
batches_count: 100;






To reproduce the above results:

$ cd experiments
$ python predictive_performance.py






Note

Running predictive_performance.py on all datasets, for all models takes ~115 hours on
an Intel Xeon Gold 6142, 64 GB Ubuntu 16.04 box equipped with a Tesla V100 16GB.
The long running time is mostly due to the early stopping configuration (see section below).




Note

All of the experiments above were conducted with early stopping on half the validation set.
Typically, the validation set can be found in X['valid'].
We only used half the validation set so the other half is available for hyperparameter tuning.

The exact early stopping configuration is as follows:



	x_valid: validation[::2]


	criteria: mrr


	x_filter: train + validation + test


	stop_interval: 4


	burn_in: 0


	check_interval: 50







Note that early stopping adds a significant computational burden to the learning procedure.
To lessen it, you may either decrease the validation set, the stop interval, the check interval,
or increase the burn in.




Note

Due to a combination of model and dataset size it is not possible to evaluate Yago3-10 with ConvKB on the
GPU. The fastest way to replicate the results above is to train ConvKB with Yago3-10 on a GPU using the hyper-
parameters described above (~15hrs on GTX 1080Ti), and then evaluate the model in CPU only mode (~15 hours on
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz).




Note

ConvKB with early-stopping evaluation protocol does not fit into GPU memory, so instead is just
trained for a set number of epochs.



Experiments can be limited to specific models-dataset combinations as follows:

$ python predictive_performance.py -h
usage: predictive_performance.py [-h] [-d {fb15k,fb15k-237,wn18,wn18rr,yago310}]
                                 [-m {complex,transe,distmult,hole,convkb,conve}]

optional arguments:
  -h, --help            show this help message and exit
  -d {fb15k,fb15k-237,wn18,wn18rr,yago310}, --dataset {fb15k,fb15k-237,wn18,wn18rr,yago310}
  -m {complex,transe,distmult,hole,convkb,conve}, --model {complex,transe,distmult,hole,convkb,conve}








Runtime Performance

Training the models on FB15K-237 (k=100, eta=10, batches_count=100, loss=multiclass_nll), on an Intel Xeon Gold 6142, 64 GB
Ubuntu 16.04 box equipped with a Tesla V100 16GB gives the following runtime report:







	model

	seconds/epoch





	ComplEx

	1.33



	TransE

	1.22



	DistMult

	1.20



	HolE

	1.30



	ConvKB

	2.83



	ConvE

	1.13







Note

ConvE is trained with bce loss instead of multiclass_nll.









          

      

      

    

  

    
      
          
            
  
Bibliography


	aC15

	Danqi and Chen. Observed versus latent features for knowledge base and text inference. In 3rd Workshop on Continuous Vector Space Models and Their Compositionality. ACL - Association for Computational Linguistics, July 2015. URL: https://www.microsoft.com/en-us/research/publication/observed-versus-latent-features-for-knowledge-base-and-text-inference/.



	ABK+07

	Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia: a nucleus for a web of open data. In The semantic web, 722–735. Springer, 2007.



	BB12

	James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.



	BHBL11

	Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: the story so far. In Semantic services, interoperability and web applications: emerging concepts, 205–227. IGI Global, 2011.



	BEP+08

	Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 1247–1250. AcM, 2008.



	BUGD+13

	Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in neural information processing systems, 2787–2795. 2013.



	DMSR18

	Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge graph embeddings. In Procs of AAAI. 2018. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366.



	GB10

	Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics, 249–256. 2010.



	HOSM17

	Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge transfer for out-of-knowledge-base entities: A graph neural network approach. IJCAI International Joint Conference on Artificial Intelligence, pages 1802–1808, 2017.



	HS17

	Katsuhiko Hayashi and Masashi Shimbo. On the equivalence of holographic and complex embeddings for link prediction. CoRR, 2017. URL: http://arxiv.org/abs/1702.05563, arXiv:1702.05563 [https://arxiv.org/abs/1702.05563].



	KBK17

	Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base completion: baselines strike back. CoRR, 2017. URL: http://arxiv.org/abs/1705.10744, arXiv:1705.10744 [https://arxiv.org/abs/1705.10744].



	LUO18

	Timothee Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for knowledge base completion. In International Conference on Machine Learning, 2869–2878. 2018.



	LJ18

	Lisha Li and Kevin Jamieson. Hyperband: a novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18:1–52, 2018.



	MBS13

	Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. Yago3: a knowledge base from multilingual wikipedias. In CIDR. 2013.



	Mil95

	George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995.



	NNNP18

	Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network. In Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 327–333. 2018.



	NMTG16

	Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational machine learning for knowledge graphs. Procs of the IEEE, 104(1):11–33, 2016.



	NRP+16

	Maximilian Nickel, Lorenzo Rosasco, Tomaso A Poggio, and others. Holographic embeddings of knowledge graphs. In AAAI, 1955–1961. 2016.



	P+99

	John Platt and others. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.



	Pri10

	Princeton. About wordnet. Web, 2010. https://wordnet.princeton.edu.



	SCMN13

	Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural tensor networks for knowledge base completion. In Advances in neural information processing systems, 926–934. 2013.



	SKW07

	Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge. In Procs of WWW, 697–706. ACM, 2007.



	SDNT19

	Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: knowledge graph embedding by relational rotation in complex space. In International Conference on Learning Representations. 2019. URL: https://openreview.net/forum?id=HkgEQnRqYQ.



	TC20

	Pedro Tabacof and Luca Costabello. Probability Calibration for Knowledge Graph Embedding Models. In ICLR. 2020.



	TCP+15

	Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael Gamon. Representing text for joint embedding of text and knowledge bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1499–1509. 2015.



	TWR+16

	Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex embeddings for simple link prediction. In International Conference on Machine Learning, 2071–2080. 2016.



	YYH+14

	Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint, 2014.











          

      

      

    

  

    
      
          
            
  
Changelog


1.3.1

18 Mar 2020


	Minor bug fix in ConvE (#189)







1.3.0

9 Mar 2020


	ConvE model Implementation (#178)


	Changes to evaluate_performance API (#183)


	Option to add reciprocal relations (#181)


	Minor fixes to ConvKB (#168, #167)


	Minor fixes in large graph mode (#174, #172, #169)


	Option to skip unseen entities checks when train_test_split is used (#163)


	Stability of NLL losses (#170)


	ICLR-20 calibration paper experiments added in branch paper/ICLR-20







1.2.0

22 Oct 2019


	Probability calibration using Platt scaling, both with provided negatives or synthetic negative statements (#131)


	Added ConvKB model


	Added WN11, FB13 loaders (datasets with ground truth positive and negative triples) (#138)


	Continuous integration with CircleCI, integrated on GitHub (#127)


	Refactoring of models into separate files (#104)


	Fixed bug where the number of epochs did not exactly match the provided number by the user (#135)


	Fixed some bugs on RandomBaseline model (#133, #134)


	Fixed some bugs on discover_facts with strategies “exhaustive” and “graph_degree”


	Fixed bug on subsequent calls of model.predict on the GPU (#137)







1.1.0

16 Aug 2019


	Support for large number of entities (#61, #113)


	Faster evaluation protocol (#74)


	New Knowledge discovery APIs: discover facts, clustering, near-duplicates detection, topn query (#118)


	API change: model.predict() does not return ranks anymore


	API change: friendlier ranking API output (#101)


	Implemented nuclear-3 norm (#23)


	Jupyter notebook tutorials: AmpliGraph basics (#67) and Link-based clustering


	Random search for hyper-parameter tuning (#106)


	Additional initializers (#112)


	Experiment campaign with multiclass-loss


	System-wide bugfixes and minor improvements







1.0.3

7 Jun 2019


	Fixed regression in RandomBaseline (#94)


	Added TensorBoard Embedding Projector support (#86)


	Minor bugfixing (#87, #47)







1.0.2

19 Apr 2019


	Added multiclass loss (#24 and #22)


	Updated the negative generation to speed up evaluation for default protocol.(#74)


	Support for visualization of embeddings using Tensorboard (#16)


	Save models with custom names. (#71)


	Quick fix for the overflow issue for datasets with a million entities. (#61)


	Fixed issues in train_test_split_no_unseen API and updated api (#68)


	Added unit test cases for better coverage of the code(#75)


	Corrupt_sides : can now generate corruptions for training on both sides, or only on subject or object


	Better error messages


	Reduced logging verbosity


	Added YAGO3-10 experiments


	Added MD5 checksum for datasets (#47)


	Addressed issue of ambiguous dataset loaders (#59)


	Renamed ‘type’ parameter in models.get_embeddings  to fix masking built-in function


	Updated String comparison to use equality instead of identity.


	Moved save_model and restore_model to ampligraph.utils (but existing API will remain for several releases).


	Other minor issues (#63, #64, #65, #66)







1.0.1

22 Mar 2019


	evaluation protocol now ranks object and subjects corruptions separately


	Corruption generation can now use entities from current batch only


	FB15k-237, WN18RR loaders filter out unseen triples by default


	Removed some unused arguments


	Improved documentation


	Minor bugfixing







1.0.0

16 Mar 2019


	TransE


	DistMult


	ComplEx


	FB15k, WN18, FB15k-237, WN18RR, YAGO3-10 loaders


	generic loader for csv files


	RDF, ntriples loaders


	Learning to rank evaluation protocol


	Tensorflow-based negatives generation


	save/restore capabilities for models


	pairwise loss


	nll loss


	self-adversarial loss


	absolute margin loss


	Model selection routine


	LCWA corruption strategy for training and eval


	rank, Hits@N, MRR scores functions










          

      

      

    

  

    
      
          
            
  
About

AmpliGraph is maintained by Accenture Labs Dublin [https://www.accenture.com/us-en/accenture-technology-labs-index].


Contact us

You can contact us by email at about@ampligraph.org.

Join the conversation on Slack [https://join.slack.com/t/ampligraph/shared_invite/enQtNTc2NTI0MzUxMTM5LTRkODk0MjI2OWRlZjdjYmExY2Q3M2M3NGY0MGYyMmI4NWYyMWVhYTRjZDhkZjA1YTEyMzBkMGE4N2RmNTRiZDg]
[image: _images/slack_logo.png]




How to Cite

If you like AmpliGraph and you use it in your project, why not starring the project on GitHub!

[image: _images/AmpliGraph.svg] [https://GitHub.com/Accenture/AmpliGraph/stargazers/]

If you instead use AmpliGraph in an academic publication, cite as:

@misc{ampligraph,
 author= {Luca Costabello and
          Sumit Pai and
          Chan Le Van and
          Rory McGrath and
          Nicholas McCarthy and
          Pedro Tabacof},
 title = {{AmpliGraph: a Library for Representation Learning on Knowledge Graphs}},
 month = mar,
 year  = 2019,
 doi   = {10.5281/zenodo.2595043},
 url   = {https://doi.org/10.5281/zenodo.2595043}
}





[image: _images/zenodo.2595043.svg] [https://doi.org/10.5281/zenodo.2595043]
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	Luca Costabello [http://github.com/lukostaz]


	Chan Le Van [http://github.com/chanlevan]
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	Rory McGrath [http://github.com/rorymcgrath]
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License

AmpliGraph is licensed under the Apache 2.0 License.
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Data Adapters

In order to be able to support multiple data sources to be used within AmpliGraph and to provide guidelines for the
developers to develop similar APIs, in order to ingest their data directly into AmpliGraph, we have introduced an
adapter based pattern. We have currently provided two such adapters, to adapt numpy arrays and to read data directly
from a database.

Internally, AmpliGraph uses a set of methods that are defined within the base class (AmpligraphDatasetAdapter).
Every data adapter must be inherited from this class to be able to be used within AmpliGraph.


Training

While fitting a model, AmpliGraph accepts either an object of AmpligraphDatasetAdapter class or a numpy array.
To support backward compatibility, we support numpy arrays as inputs. However, internally we adapt this data in our
NumpyAdapter and then the data is consumed as described below.

AmpliGraph calls generate_mappings() of the adapter object to generate the dictionary of entity/relation to
index mappings. It then calls map_data to map the data from entity to idx if not already done.
To get batches of train data, AmpliGraph uses the get_next_batch generator.
It uses the get_size method to determine the size of the dataset.




Evaluation Procedure

While evaluating the performance of the models, AmpliGraph supports either an object of AmpligraphDatasetAdapter
class or a numpy array as input. Just like the fit function, we first adapt the data with the NumpyAdapter before
consuming. AmpliGraph accepts numpy array as filter_triples for backward compatibility (if the test triples are also
passed as numpy arrays); if not, it expects the Adapter to know how to filter (this is indicated by passing True
to filter_triples instead of a numpy array).
The evaluate_performance method then passes the handle of this data_adapter to the get_ranks() method.
The evaluation procedure is as described below.

The get_ranks() method generates ranks for all the test triples. In order to generate the test triples it uses the
get_next_batch() generator of the data_adapter with appropriate dataset type and use_filters flag,
depending on whether the filters are set or not. With get_next_batch() and use_filters=False, AmpliGraph expects a batch of test triples; whereas with get_next_batch method and use_filters=True, it expects the test triple along with the indices of all the subject and object entities that were involved in the ?-p-o and s-p-? relations.
It uses the get_size method to determine the size of the dataset.

Once the batch of test triples are generated (along with the filter indices - for filtering mode), the test triples
and the corresponding corruptions are scored and ranked.






Dealing with Large Graphs

In the context of this discussion, large graph means graphs whose embeddings do not fit in the GPU memory. For example,
with Complex model (k=200) for 10 million distinct entities,
one would need 10 million * 200 * 2(for real/imaginary) * 4(float 32) bytes of GPU memory (approximately 15 GB of
GPU just for holding the embeddings). Hence on a normal GPU, this would not fit. The user would be forced to move to
GPU to do the computations which would slow down the training/evaluation.

To avoid this, and make use of GPU cores for faster computations, we have introduced a mode to deal with large graphs.
As of now, you can specify whether a graph is large or not depending on the number of distinct entities.
It’s set to 500,000 but can be changed using the set_entity_threshold() method in the latent_features module.
To reset it back to the default threshold, use the reset_entity_threshold() method.

In this mode, the entity embeddings are not created on the GPU. Instead, the embeddings are created on the CPU.
While training, we load embeddings of batch_size * 2 entities. In other words, in a batch we can get only a max of
batch_size * 2 entities i.e. subject and objects of the batch. However, in general, this number is always less than
that, as some of the entities might be repeated. In such cases we randomly select other entities that are not present
in the batch to make up that value. These entity embeddings are loaded on the GPU and the corruptions for training are
generated from these entity embeddings. This way, all the gradient computations happens on the GPU for that batch. The
updated variables are stored back on the CPU. This process is repeated for every training batch. In this way, we make
maximum use of the GPU for faster computation.

However, there is a drawback to this approach. Since we are loading and unloading the entity embeddings every batch,
we cant use optimizers other than SGD. The reason for this is that optimizers like Adam, adagrad, etc maintains
internally a different learning rate per parameter; and in our case we are changing the parameters every batch. So
these optimizers cannot be used. However, we have provided various other tricks with SGD to make up for this drawback
eg: SGD with sinusoidal/fixed decay and expanding cycling time, etc.

We use a similar approach during evaluation, were we generate corruptions in batches and load the embeddings as needed.

In the large graph mode, the training/evaluation would be slower than usual as the embeddings need to be loaded/unloaded
from GPU every batch; however, it is still much faster than doing computations on CPU (using tensorflow cpu version and
normal AmpliGraph mode).

We have tested this approach with the fb15k dataset by explicitly setting large graph mode to just 100 entities and
using a batch count of 100. With batch count of 100, the batch size is approximately 4500. In other words we would load
approximately 4500 entity embeddings in GPU memory per batch (out of a total 14951 entities). The training slows down
by a small margin (it takes 1.5 times more per epoch than the usual mode due to the loading/unloading overhead).
However the evaluation performance is worse, since for each test triple, we generate all the possible corruptions and
this is further batched (only 4500 corruptions per batch). It takes a few hours. It is, however, much faster than
using tensorflow cpu.

If the user does not want to use this mode and prefers to use the normal mode (say, to make use of other optimizers
like Adam, etc while training), they can use the CPU version of the tensorflow and run AmpliGraph as usual.
They can increase the entity threshold to a number greater than the distinct entites in their use case and
then run AmpliGraph, so as to use the normal mode (instead of large graph mode - by default set to 500,000 entities).
However, since all the computations happen on the CPU it will be much slower.


A Note on SQLite Adapter

This adapter can use an existing DB (if it uses AmpliGraph Schema) or can create a DB and store data in the
AmpliGraph Schema. We are providing this adapter, especially for people who want to use graph which have
billions of triples.

With our adapter, users can persist the data, in parts (if required), into the database. For example, if a user
has multiple files containing the triples data, then first they can create a mapping dictionary (concept to index)
that should be used to represent the distinct entities and relations. Next they can load each file and persist the
data in sql by specifying whether to use the data as train/test/valid. This can be repeated for each file and the
data can be extended in the database.

Once the data is created this way, the user can pass the adapter handle to the fit and evaluate function.
These functions will internally use the required APIs and consume data appropriately
as specified (i.e. train/test/valid).

#Usage for extremely large datasets:
from AmpliGraph.datasets import SQLiteAdapter
adapt = SQLiteAdapter()

#compute the mappings from the large dataset.
#Let's assume that the mappings are already computed in rel_to_idx, ent_to_idx.
#Set the mappings
adapt.use_mappings(rel_to_idx, ent_to_idx)

#load and store parts of data in the db as train test or valid
#if you have already mapped the entity names to index, set mapped_status = True
adapt.set_data(load_part1, 'train', mapped_status = True)
adapt.set_data(load_part2, 'train', mapped_status = True)
adapt.set_data(load_part3, 'train', mapped_status = True)

#if mapped_status = False, then the adapter will map the entities to index before persisting
adapt.set_data(load_part1, 'test', mapped_status = False)
adapt.set_data(load_part2, 'test', mapped_status = False)

adapt.set_data(load_part1, 'valid', mapped_status = False)
adapt.set_data(load_part2, 'valid', mapped_status = False)

#create the model
model = ComplEx(batches_count=10000, seed=0, epochs=10, k=50, eta=10)
model.fit(adapt)
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