AmpliGraph Release 1.0.3 Luca Costabello - Accenture Labs Dublin # Contents: | 1 Key Features | 3 | |---------------------|----| | 2 Modules | 5 | | 3 How to Cite | 7 | | Bibliography | 77 | | Python Module Index | 79 | | Index | 81 | Open source Python library that predicts links between concepts in a knowledge graph. AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that deals with supervised learning on knowledge graphs. # Use AmpliGraph if you need to: - Discover new knowledge from an existing knowledge graph. - Complete large knowledge graphs with missing statements. - Generate stand-alone knowledge graph embeddings. - Develop and evaluate a new relational model. AmpliGraph's machine learning models generate **knowledge graph embeddings**, vector representations of concepts in a metric space: Contents: 1 It then combines embeddings with model-specific scoring functions to predict unseen and novel links: 2 Contents: # CHAPTER 1 # **Key Features** - **Intuitive APIs**: AmpliGraph APIs are designed to reduce the code amount required to learn models that predict links in knowledge graphs. - **GPU-Ready**: AmpliGraph is based on TensorFlow, and it is designed to run seamlessly on CPU and GPU devices to speed-up training. - Extensible: Roll your own knowledge graph embeddings model by extending AmpliGraph base estimators. # CHAPTER 2 # Modules AmpliGraph includes the following submodules: - Input: Helper functions to load datasets (knowledge graphs). - Latent Feature Models: knowledge graph embedding models. AmpliGraph contains: TransE, DistMult, ComplEx, HolE. (More to come!) - Evaluation: Metrics and evaluation protocols to assess the predictive power of the models. 6 Chapter 2. Modules # CHAPTER 3 How to Cite If you like AmpliGraph and you use it in your project, why not starring the project on GitHub! If you instead use AmpliGraph in an academic publication, cite as: # 3.1 Installation # 3.1.1 Prerequisites - Linux Box - Python 3.6 ### **Provision a Virtual Environment** Create and activate a virtual environment (conda) ``` conda create --name ampligraph python=3.6 source activate ampligraph ``` ### **Install TensorFlow** AmpliGraph is built on TensorFlow 1.x. Install from pip or conda: # **CPU-only** ``` pip install tensorflow==1.13.1 or conda install tensorflow=1.13.1 ``` # **GPU** support ``` pip install tensorflow-gpu==1.13.1 or conda install tensorflow-gpu=1.13.1 ``` # 3.1.2 Install AmpliGraph Install the latest stable release from pip: ``` pip install ampligraph ``` If instead you want the most recent development version, you can clone the repository and install from source as: See the *How to Contribute guide* for details. ``` git clone https://github.com/Accenture/AmpliGraph.git git checkout develop cd AmpliGraph pip install -e . ``` # 3.1.3 Sanity Check ``` >> import ampligraph >> ampligraph.__version__ '1.0.3' ``` # 3.2 Background Knowledge graphs are graph-based knowledge bases whose facts are modeled as relationships between entities. Knowledge graph research led to broad-scope graphs such as DBpedia [ABK+07], WordNet [Pri10], and YAGO [SKW07]. Countless domain-specific knowledge graphs have also been published on the web, giving birth to the so-called Web of Data [BHBL11]. Formally, a knowledge graph $\mathcal{G} = \{(sub, pred, obj)\} \subseteq \mathcal{E} \times \mathcal{R} \times \mathcal{E} \text{ is a set of } (sub, pred, obj) \text{ triples, each including a subject } sub \in \mathcal{E}, \text{ a predicate } pred \in \mathcal{R}, \text{ and an object } obj \in \mathcal{E}. \mathcal{E} \text{ and } \mathcal{R} \text{ are the sets of all entities and relation types of } \mathcal{G}.$ Knowledge graph embedding models are neural architectures that encode concepts from a knowledge graph (i.e. entities \mathcal{E} and relation types \mathcal{R}) into low-dimensional, continuous vectors $\in \mathcal{R}^k$. Such textit{knowledge graph embeddings} have applications in knowledge graph completion, entity resolution, and link-based clustering, just to cite a few [NMTG16]. Knowledge graph embeddings are learned by training a neural architecture over a graph. Although such architectures vary, the training phase always consists in minimizing a loss function \mathcal{L} that includes a *scoring function* $f_m(t)$, i.e. a model-specific function that assigns a score to a triple t = (sub, pred, obj). The goal of the optimization procedure is learning optimal embeddings, such that the scoring function is able to assign high scores to positive statements and low scores to statements unlikely to be true. Existing models propose scoring functions that combine the embeddings \mathbf{e}_{sub} , \mathbf{e}_{pred} , $\mathbf{e}_{obj} \in \mathcal{R}^k$ of the subject, predicate, and object of triple t=(sub,pred,obj) using different intuitions: TransE [BUGD+13] relies on distances, DistMult [YYH+14] and ComplEx [TWR+16] are bilinear-diagonal models, HolE [NRP+16] uses circular correlation. While the above models can be interpreted as multilayer perceptrons, others such as ConvE include convolutional layers [DMSR18]. As example, the scoring function of TransE computes a similarity between the embedding of the subject \mathbf{e}_{sub} translated by the embedding of the predicate \mathbf{e}_{pred} and the embedding of the object \mathbf{e}_{obj} , using the L_1 or L_2 norm $||\cdot||$: $$f_{TransE} = -||\mathbf{e}_{sub} + \mathbf{e}_{pred} - \mathbf{e}_{obj}||_n$$ Such scoring function is then used on positive and negative triples t^+, t^- in the loss function. This can be for example a pairwise margin-based loss, as shown in the equation below: $$\mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}} \sum_{t^- \in \mathcal{N}} \max(0, [\gamma + f_m(t^-; \Theta) - f_m(t^+; \Theta)])$$ where Θ are the embeddings learned by the model, f_m is the model-specific scoring function, $\gamma \in \mathcal{R}$ is the margin and \mathcal{N} is a set of negative triples generated with a corruption heuristic [BUGD+13]. # 3.3 API AmpliGraph includes the following submodules: ### 3.3.1 Datasets Helper functions to load knowledge graphs. **Note:** It is recommended to set the AMPLIGRAPH_DATA_HOME environment variable: ``` export AMPLIGRAPH_DATA_HOME=/YOUR/PATH/TO/datasets ``` When attempting to load a dataset, the module will first check if AMPLIGRAPH_DATA_HOME is set. If it is, it will search this location for the required dataset. If the dataset is not found it will be downloaded and placed in this directory. If AMPLIGRAPH DATA HOME has not been set the databases will be saved in the following directory: ~/ampligraph_datasets # **Dataset-Specific Loaders** Use these helpers functions to load datasets used in graph representation learning literature. The functions will **automatically download** the datasets if they are not present in ~/ampligraph_datasets or at the location set in AMPLIGRAPH_DATA_HOME. | load_wn18([check_md5hash]) | Load the WN18 dataset | |---|----------------------------| | load_fb15k([check_md5hash]) | Load the FB15k dataset | | load_fb15k_237([check_md5hash, clean_unseen]) | Load the FB15k-237 dataset | | 10ad_yago3_10([check_md5hash, clean_unseen]) | Load the YAGO3-10 dataset | | load_wn18rr([check_md5hash, clean_unseen]) | Load the WN18RR dataset | ### load wn18 ``` ampligraph.datasets.load_wn18 (check_md5hash=False) Load the WN18 dataset ``` WN18 is a subset of Wordnet. It was first presented by [BUGD+13]. The WN18 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. IF AMPLIGRAPH_DATA_HOME is not set the default ~/ampligraph_datasets is checked. If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME or ~/ampligraph_datasets. The dataset is divided in three splits: - train: 141,442 triples - valid 5,000 triples - test 5,000 triples | Dataset | Train | Valid | Test | Entities | Relations | |---------|---------|-------|-------|----------|-----------| | WN18 | 141,442 | 5,000 | 5,000 | 40,943 | 18 | **Warning:** The dataset includes a large number of inverse relations, and its use in experiments has been deprecated. Use WN18RR instead. **Parameters check_md5hash** (bool) - If True check the md5hash of the files. Defaults to False. **Returns** splits – The dataset splits { 'train': train, 'valid': valid, 'test': test}. Each split is an ndarray of shape [n, 3]. Return type dict ### **Examples** ``` >>> from ampligraph.datasets import load_wn18 >>> X = load_wn18() >>> X['test'][:3] array([['06845599', '_member_of_domain_usage', '03754979'], ``` (continues on next page) (continued from previous page) ``` ['00789448', '_verb_group', '01062739'], ['10217831', '_hyponym', '10682169']], dtype=object) ``` # load_fb15k ``` ampligraph.datasets.load_fb15k(check_md5hash=False) Load the FB15k dataset ``` FB15k is a split of Freebase, first proposed by [BUGD+13]. The FB15k dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If AMPLIGRAPH_DATA_HOME is not set the default ~/ampligraph_datasets is checked. If the dataset is not found at either location it is downloaded and placed in $AMPLIGRAPH_DATA_HOME$ or \sim /ampligraph_datasets. The dataset is divided in three splits: - train - valid - test | Dataset | Train | Valid | Test | Entities | Relations | |---------|---------|--------|--------|----------|-----------| | FB15K | 483,142 | 50,000 | 59,071 | 14,951 | 1,345 | **Warning:** The dataset includes a large number of inverse relations, and its use in experiments has been deprecated. Use FB15k-237 instead. Parameters check_md5hash (boolean) - If True check the md5hash of the files. Defaults to False. **Returns splits** – The dataset splits: {'train': train, 'valid': valid, 'test': test}. Each split is an ndarray of shape [n, 3]. Return type dict ### **Examples** # load fb15k 237 ```
ampligraph.datasets.load_fb15k_237 (check_md5hash=False, clean_unseen=True) Load the FB15k-237 dataset ``` FB15k-237 is a reduced version of FB15K. It was first proposed by [TCP+15]. The FB15k-237 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If AMPLIGRAPH DATA HOME is not set the default ~/ampligraph datasets is checked. If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME or ~/ampligraph_datasets. The dataset is divided in three splits: - train - valid - test | Dataset | Train | Valid | Test | Entities | Relations | |-----------|---------|--------|--------|----------|-----------| | FB15K-237 | 272,115 | 17,535 | 20,466 | 14,541 | 237 | **Warning:** FB15K-237's validation set contains 8 unseen entities over 9 triples. The test set has 29 unseen entities, distributed over 28 triples. #### **Parameters** - check_md5hash (boolean) If True check the md5hash of the files. Defaults to False. - **clean_unseen** (bool) If True, filters triples in validation and test sets that include entities not present in the training set. **Returns splits** – The dataset splits: {'train': train, 'valid': valid, 'test': test}. Each split is an ndarray of shape [n, 3]. Return type dict # **Examples** ``` >>> from ampligraph.datasets import load_fb15k_237 >>> X = load_fb15k_237() >>> X["train"][2] array(['/m/07s9r10', '/media_common/netflix_genre/titles', '/m/0170z3'], dtype=object) ``` # load yago3 10 ``` ampligraph.datasets.load_yago3_10 (check_md5hash=False, clean_unseen=True) Load the YAGO3-10 dataset ``` The dataset is a split of YAGO3 [MBS13], and has been first presented in [DMSR18]. The YAGO3-10 dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If AMPLIGRAPH_DATA_HOME is not set the default ~/ampligraph_datasets is checked. If the dataset is not found at either location it is downloaded and placed in AMPLIGRAPH_DATA_HOME or ~/ampligraph_datasets. It is divided in three splits: - train - valid - test | Dataset | Train | Valid | Test | Entities | Relations | |----------|-----------|-------|-------|----------|-----------| | YAGO3-10 | 1,079,040 | 5,000 | 5,000 | 123,182 | 37 | #### **Parameters** - check_md5hash (boolean) If True check the md5hash of the files. Defaults to False. - **clean_unseen** (bool) If True, filters triples in validation and test sets that include entities not present in the training set. **Returns splits** – The dataset splits: {'train': train, 'valid': valid, 'test': test}. Each split is an ndarray of shape [n, 3]. Return type dict # **Examples** ``` >>> from ampligraph.datasets import load_yago3_10 >>> X = load_yago3_10() >>> X["valid"][0] array(['Mikheil_Khutsishvili', 'playsFor', 'FC_Merani_Tbilisi'], dtype=object) ``` #### load wn18rr ampligraph.datasets.load_wn18rr(check_md5hash=False, clean_unseen=True) Load the WN18RR dataset The dataset is described in [DMSR18]. The WN18RR dataset is loaded from file if it exists at the AMPLIGRAPH_DATA_HOME location. If AMPLIGRAPH_DATA_HOME is not set the default ~/ampligraph_datasets is checked. If the dataset is not found at either location it is downloaded and placed in $AMPLIGRAPH_DATA_HOME$ or \sim /ampligraph_datasets. It is divided in three splits: - train - valid - test | Dataset | Train | Valid | Test | Entities | Relations | |---------|--------|-------|-------|----------|-----------| | WN18RR | 86,835 | 3,034 | 3,134 | 40,943 | 11 | **Warning:** WN18RR's validation set contains 198 unseen entities over 210 triples. The test set has 209 unseen entities, distributed over 210 triples. #### **Parameters** - **clean_unseen** (bool) If True, filters triples in validation and test sets that include entities not present in the training set. - check_md5hash (bool) If True check the md5hash of the datset files. Defaults to False. **Returns splits** – The dataset splits: {'train': train, 'valid': valid, 'test': test}. Each split is an ndarray of shape [n, 3]. Return type dict # **Examples** ``` >>> from ampligraph.datasets import load_wn18rr >>> X = load_wn18rr() >>> X["valid"][0] array(['02174461', '_hypernym', '02176268'], dtype=object) ``` # **Datasets Summary** | Dataset | Train | Valid | Test | Entities | Relations | |-----------|-----------|--------|--------|----------|-----------| | FB15K-237 | 272,115 | 17,535 | 20,466 | 14,541 | 237 | | WN18RR | 86,835 | 3,034 | 3,134 | 40,943 | 11 | | FB15K | 483,142 | 50,000 | 59,071 | 14,951 | 1,345 | | WN18 | 141,442 | 5,000 | 5,000 | 40,943 | 18 | | YAGO3-10 | 1,079,040 | 5,000 | 5,000 | 123,182 | 37 | **Hint:** WN18 and FB15k include a large number of inverse relations, and its use in experiments has been deprecated. **Use WN18RR and FB15K-237 instead**. **Warning:** FB15K-237's validation set contains 8 unseen entities over 9 triples. The test set has 29 unseen entities, distributed over 28 triples. WN18RR's validation set contains 198 unseen entities over 210 triples. The test set has 209 unseen entities, distributed over 210 triples. ## **Generic Loaders** Functions to load custom knowledge graphs from disk. | load_from_csv(directory_path, file_name[,]) | Load a knowledge graph from a csv file | |--|--| | <pre>load_from_ntriples(folder_name, file_name[,</pre> | Load RDF ntriples | |]) | | | <pre>load_from_rdf(folder_name, file_name[,])</pre> | Load an RDF file | # load_from_csv ampligraph.datasets.load_from_csv (directory_path, file_name, sep='\t', header=None) Load a knowledge graph from a csv file Loads a knowledge graph serialized in a csv file as: ``` subj1 relationX obj1 subj1 relationY obj2 subj3 relationZ obj2 subj4 relationY obj2 ... ``` **Note:** The function filters duplicated statements. **Note:** It is recommended to use <code>ampligraph.evaluation.train_test_split_no_unseen()</code> to split custom knowledge graphs into train, validation, and test sets. Using this function will lead to validation, test sets that do not include triples with entities that do not occur in the training set. #### **Parameters** - **directory_path** (*str*) folder where the input file is stored. - **file_name** (str) file name - sep(str) The subject-predicate-object separator (default). - header (int, None) The row of the header of the csv file. Same as pandas.read_csv header param. **Returns** triples – the actual triples of the file. Return type ndarray, shape [n, 3] # **Examples** ## load_from_ntriples ``` ampligraph.datasets.load_from_ntriples (folder_name, file_name, data_home=None) Load RDF ntriples ``` Loads an RDF knowledge graph serialized as ntriples, without building an RDF graph in memory. This function should be preferred over <code>load_from_rdf()</code>, since it does not load the graph into an rdflib model (and it is therefore faster by order of magnitudes). Nevertheless, it requires a ntriples serialization as in the example below: ``` _:alice <http://xmlns.com/foaf/0.1/knows> _:bob . _:bob <http://xmlns.com/foaf/0.1/knows> _:alice . ``` **Note:** It is recommended to use <code>ampligraph.evaluation.train_test_split_no_unseen()</code> to split custom knowledge graphs into train, validation, and test sets. Using this function will lead to validation, test sets that do not include triples with entities that do not occur in the training set. #### **Parameters** - **folder_name** (str) base folder where the file is stored. - **file_name** (str) file name **Returns** triples – the actual triples of the file. Return type ndarray, shape [n, 3] #### load from rdf ``` ampligraph.datasets.load_from_rdf(folder_name, file_name, format='nt', data_home=None) Load an RDF file ``` Loads an RDF knowledge graph using rdflib APIs. Multiple RDF serialization formats are supported (nt, ttl, rdf/xml, etc). The entire graph will be loaded in memory, and converted into an rdflib *Graph* object. **Warning:** Large RDF graphs should be serialized to ntriples beforehand and loaded with load_from_ntriples() instead. **Note:** It is recommended to use <code>ampligraph.evaluation.train_test_split_no_unseen()</code> to split custom knowledge graphs into train, validation, and test sets. Using this function will lead to validation, test sets that do not include triples with entities that do not occur in the training set. #### **Parameters** - **folder name** (str) base folder where the file is stored. - **file_name** (str) file name - **format** (str) The RDF serialization format (nt, ttl, rdf/xml see rdflib documentation) **Returns triples** – the actual triples of the file. **Return type** ndarray, shape [n, 3] **Hint:** AmpliGraph includes a helper function to split a generic knowledge graphs into **training**, **validation**, and **test** sets. See <code>ampligraph.evaluation.train_test_split_no_unseen()</code>. # **3.3.2 Models** This module includes neural graph embedding models and support functions. Knowledge graph embedding models are neural architectures that encode concepts from a knowledge graph (i.e. entities \mathcal{E} and relation types \mathcal{R}) into low-dimensional, continuous vectors $\in \mathcal{R}^k$. Such *knowledge graph embeddings* have applications in knowledge graph completion, entity resolution, and link-based clustering, just to cite a few [NMTG16]. # **Knowledge Graph Embedding Models** | RandomBaseline([seed]) | Random baseline | |---|---------------------------------| | TransE([k, eta, epochs, batches_count,]) | Translating Embeddings (TransE) | | DistMult([k, eta, epochs, batches_count,]) | The DistMult model | | Complex([k, eta, epochs, batches_count,]) | Complex embeddings (ComplEx) | | $Hole([k, eta, epochs, batches_count, seed,])$ | Holographic Embeddings | #### RandomBaseline ``` class ampligraph.latent_features.RandomBaseline (seed=0) Random baseline ``` A dummy model that assigns a pseudo-random score included between 0 and 1, drawn from a
uniform distribution. The model is useful whenever you need to compare the performance of another model on a custom knowledge graph, and no other baseline is available. Note: Although the model still requires invoking the fit () method, no actual training will be carried out. ### **Examples** ``` >>> import numpy as np >>> from ampligraph.latent_features import RandomBaseline >>> model = RandomBaseline() >>> X = np.array([['a', 'y', 'b'], >>> ['b', 'y', 'a'], ['a', 'y', 'c'], >>> ['c', 'y', 'a'], >>> ['a', 'y', 'd'], >>> ['c', 'y', 'd'], >>> ['b', 'y', 'c'], >>> ['f', 'y', 'e']]) >>> >>> model.fit(X) ``` (continues on next page) (continued from previous page) ``` >>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']])) [0.5488135039273248, 0.7151893663724195] ``` #### **Methods** | init([seed]) | Initialize the model | |--|---| | fit(X) | Train the random model | | <pre>predict(X[, from_idx, get_ranks])</pre> | Assign random scores to candidate triples and then ranks them | __init__(seed=0) Initialize the model **Parameters** seed (int) – The seed used by the internal random numbers generator. fit(X) Train the random model Parameters X (ndarray, shape [n, 3]) – The training triples predict (X, from_idx=False, get_ranks=False) Assign random scores to candidate triples and then ranks them #### **Parameters** - **X** (ndarray, shape [n, 3]) The triples to score. - **from_idx** (bool) If True, will skip conversion to internal IDs. (default: False). - **get_ranks** (bool) Flag to compute ranks by scoring against corruptions (default: False). #### Returns - **scores** (*ndarray*, *shape* [*n*]) The predicted scores for input triples X. - ranks (ndarray, shape [n]) Rank of the triple # **TransE** ``` class ampligraph.latent_features.TransE(k=100, epochs=100, eta=2, seed=0, batches_count=100, embed- ding_model_params={'corrupt_sides': \int 's+o'l 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regular- izer_params={}, verbose=False) ``` Translating Embeddings (TransE) The model as described in [BUGD+13]. The scoring function of TransE computes a similarity between the embedding of the subject \mathbf{e}_{sub} translated by the embedding of the predicate \mathbf{e}_{pred} and the embedding of the object \mathbf{e}_{obj} , using the L_1 or L_2 norm $||\cdot||$: $$f_{TransE} = -||\mathbf{e}_{sub} + \mathbf{e}_{pred} - \mathbf{e}_{obj}||_n$$ Such scoring function is then used on positive and negative triples t^+, t^- in the loss function. # **Examples** ``` >>> import numpy as np >>> from ampligraph.latent_features import TransE >>> model = TransE(batches_count=1, seed=555, epochs=20, k=10, loss='pairwise', loss_params={'margin':5}) >>> X = np.array([['a', 'y', 'b'], ['b', 'y', 'a'], >>> ['a', 'y', 'c'], >>> ['c', 'y', 'a'], >>> >>> ['a', 'y', 'd'], ['c', 'y', 'd'], >>> ['b', 'y', 'c'], >>> >>> ['f', 'y', 'e']]) >>> model.fit(X) >>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']])) [-4.6903257, -3.9047198] >>> model.get_embeddings(['f','e'], embedding_type='entity') array([[0.10673896, -0.28916815, 0.6278883 , -0.1194713 , -0.10372276, -0.37258488, 0.06460134, -0.27879423, 0.25456288, 0.18665907], [-0.64494324, -0.12939683, 0.3181001, 0.16745451, -0.03766293, 0.24314676, -0.23038973, -0.658638 , 0.5680542 , -0.05401703]], dtype=float32) ``` #### **Methods** | init([k, eta, epochs, batches_count,]) | Initialize an EmbeddingModel | |--|--| | <pre>fit(X[, early_stopping, early_stopping_params])</pre> | Train an Translating Embeddings model. | | <pre>get_embeddings(entities[, embedding_type])</pre> | Get the embeddings of entities or relations. | | <pre>predict(X[, from_idx, get_ranks])</pre> | Predict the scores of triples using a trained embed- | | | ding model. | ``` __init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-ding_model_params={'corrupt_sides': ['s+o'], 'negative_corruption_entities': 'all', 'norm': 1, 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, verbose=False} Initialize an EmbeddingModel ``` Also creates a new Tensorflow session for training. #### **Parameters** - **k** (*int*) Embedding space dimensionality - eta (int) The number of negatives that must be generated at runtime during training for each positive. - **epochs** (*int*) The iterations of the training loop. - batches_count (int) The number of batches in which the training set must be split during the training loop. - **seed** (*int*) The seed used by the internal random numbers generator. - embedding_model_params (dict) TransE-specific hyperparams, passed to the model as a dictionary. Supported keys: - 'norm' (int): the norm to be used in the scoring function (1 or 2-norm default: 1). - 'normalize_ent_emb' (bool): flag to indicate whether to normalize entity embeddings after each batch update (default: False). - negative_corruption_entities: entities to be used for generation of corruptions while training. It can take the following values: all (default: all entities), batch (entities present in each batch), list of entities or an int (which indicates how many entities that should be used for corruption generation). - corrupt_sides: Specifies how to generate corruptions for training. Takes values s, o, s+o or any combination passed as a list - **optimizer** (*string*) The optimizer used to minimize the loss function. Choose between 'sgd', 'adagrad', 'adam', 'momentum'. - **optimizer_params** (*dict*) Arguments specific to the optimizer, passed as a dictionary. Supported keys: - 'lr' (float): learning rate (used by all the optimizers). Default: 0.1. - 'momentum' (float): learning momentum (only used when optimizer=momentum). Default: 0.9. ``` Example: optimizer_params={'lr': 0.01} ``` - **loss** (*string*) The type of loss function to use during training. - pairwise the model will use pairwise margin-based loss function. - nll the model will use negative loss likelihood. - absolute_margin the model will use absolute margin likelihood. - self_adversarial the model will use adversarial sampling loss function. - multiclass_nll the model will use multiclass nll loss. Switch to multiclass loss defined in [aC15] by passing 'corrupt_sides' as ['s','o'] to embedding_model_params. To use loss defined in [KBK17] pass 'corrupt_sides' as 'o' to embedding_model_params - loss_params (dict) Dictionary of loss-specific hyperparameters. See *loss functions* documentation for additional details. ``` Example: optimizer_params={'lr': 0.01} if loss='pairwise'. ``` - regularizer (string) The regularization strategy to use with the loss function. - None: the model will not use any regularizer (default) - 'LP': the model will use L1, L2 or L3 based on the value of regularizer_params['p'] (see below). - **regularizer_params** (*dict*) Dictionary of regularizer-specific hyperparameters. See the *regularizers* documentation for additional details. ``` Example: regularizer_params={'lambda': 1e-5, 'p': 2} if regularizer='LP'. ``` • **verbose** (bool) - Verbose mode **fit** (*X*, early_stopping=False, early_stopping_params={}) Train an Translating Embeddings model. The model is trained on a training set X using the training protocol described in [TWR+16]. #### **Parameters** - **X** (ndarray, shape [n, 3]) The training triples - early_stopping (bool) Flag to enable early stopping (default:False). If set to True, the training loop adopts the following early stopping heuristic: - The model will be trained regardless of early stopping for burn_in epochs. - Every check_interval epochs the method will compute the metric specified in criteria. If such metric decreases for stop_interval checks, we stop training early. Note the metric is computed on x_{valid} . This is usually a validation set that you held out. Also, because criteria is a ranking metric, it requires generating negatives. Entities used to generate corruptions can be specified, as long as the side(s) of a triple to corrupt. The method supports filtered metrics, by passing an array of positives to x_filter. This will be used to filter the negatives generated on the fly (i.e. the corruptions). **Note:** Keep in mind the early stopping criteria may introduce a certain overhead (caused by the metric computation). The goal is to strike a good trade-off between such overhead and saving training epochs. A common approach is to use MRR unfiltered: ``` early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` Note the size of validation set also contributes to such overhead. In most cases a smaller validation set would be enough. • **early_stopping_params** (*dictionary*) – Dictionary of hyperparameters for the early stopping heuristics. The following string keys are supported: - 'x_valid': ndarray, shape [n, 3]: Validation set to be used for early stopping. - 'criteria': string: criteria for early stopping 'hits10', 'hits3', 'hits1' or 'mrr'(default). - 'x_filter': ndarray, shape [n, 3]: Positive triples to use as filter if a 'filtered' early stopping criteria is desired (i.e. filtered-MRR if 'criteria':'mrr'). Note this will affect training time (no filter by default). - 'burn_in': int: Number of epochs to pass before kicking in early stopping (default: 100). - **check_interval'**: int : Early stopping interval after burn-in (default:10). - 'stop_interval': int: Stop if criteria is performing worse over n consecutive checks (default: 3) - 'corruption_entities': List of entities to be used for corruptions. If 'all', it uses all entities (default: 'all') - 'corrupt_side': Specifies which side to corrupt. 's', 'o', 's+o' (default) ```
Example: early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` get_embeddings (entities, embedding_type='entity') Get the embeddings of entities or relations. **Note:** Use ampligraph.utils.create_tensorboard_visualizations() to visualize the embeddings with TensorBoard. #### **Parameters** - **entities** (array-like, dtype=int, shape=[n]) The entities (or relations) of interest. Element of the vector must be the original string literals, and not internal IDs. - **embedding_type** (*string*) If 'entity', the entities argument will be considered as a list of knowledge graph entities (i.e. nodes). If set to 'relation', they will be treated as relation types instead (i.e. predicates). **Returns embeddings** – An array of k-dimensional embeddings. **Return type** ndarray, shape [n, k] ``` predict (X, from_idx=False, get_ranks=False) ``` Predict the scores of triples using a trained embedding model. The function returns raw scores generated by the model. **Note:** To obtain probability estimates, use a logistic sigmoid: ### **Parameters** - **X** (ndarray, shape [n, 3]) The triples to score. - **from_idx** (bool) If True, will skip conversion to internal IDs. (default: False). - **get_ranks** (bool) Flag to compute ranks by scoring against corruptions (default: False). ## Returns - scores_predict (ndarray, shape [n]) The predicted scores for input triples X. - rank (ndarray, shape [n]) Ranks of the triples (only returned if get_ranks=True. #### **DistMult** ``` class ampligraph.latent features.DistMult (k=100, eta=2. epochs=100, seed=0. batches_count=100, embed- ding_model_params={'corrupt_sides': [s+o], 'negative_corruption_entities': 'all', 'normalize ent emb': False}, op- timizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regu- larizer=None, regularizer_params={}, ver- bose = False) ``` The DistMult model The model as described in [YYH+14]. The bilinear diagonal DistMult model uses the trilinear dot product as scoring function: $$f_{DistMult} = \langle \mathbf{r}_p, \mathbf{e}_s, \mathbf{e}_o \rangle$$ where e_s is the embedding of the subject, \mathbf{r}_p the embedding of the predicate and e_o the embedding of the object. ### **Examples** ``` >>> import numpy as np >>> from ampligraph.latent features import DistMult >>> model = DistMult(batches_count=1, seed=555, epochs=20, k=10, loss='pairwise', loss_params={'margin':5}) >>> >>> X = np.array([['a', 'y', 'b'], ['b', 'y', 'a'], >>> ['a', 'y', 'c'], >>> ['c', 'y', 'a'], >>> ['a', 'y', 'd'], ['c', >>> 'y', 'd'], ['b', 'y', 'c'], >>> >>> ['f', 'v', 'e']]) >>> model.fit(X) >>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']])) [-0.13863425, -0.09917116] >>> model.get_embeddings(['f','e'], embedding_type='entity') array([[0.10137264, -0.28248304, 0.6153027 , -0.13133956, -0.11675504, -0.37876177, 0.06027773, -0.26390398, 0.254603 , 0.1888549], [-0.6467299, -0.13729756, 0.3074872, 0.16966867, -0.04098966, 0.25289047, -0.2212451, -0.6527815, 0.5657673, -0.03876532]], dtype=float32) ``` #### **Methods** | init([k, eta, epochs, batches_count,]) | Initialize an EmbeddingModel | |--|--| | <pre>fit(X[, early_stopping, early_stopping_params])</pre> | Train an DistMult. | | <pre>get_embeddings(entities[, embedding_type])</pre> | Get the embeddings of entities or relations. | | <pre>predict(X[, from_idx, get_ranks])</pre> | Predict the scores of triples using a trained embed- | | | ding model. | __init__ (k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-ding_model_params={'corrupt_sides': ['s+o'], 'negative_corruption_entities': 'all', 'normalize_ent_emb': False}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, verbose=False}) Initialize an EmbeddingModel Also creates a new Tensorflow session for training. #### **Parameters** - **k** (*int*) Embedding space dimensionality - eta (int) The number of negatives that must be generated at runtime during training for each positive. - **epochs** (*int*) The iterations of the training loop. - batches_count (int) The number of batches in which the training set must be split during the training loop. - **seed** (*int*) The seed used by the internal random numbers generator. - **embedding_model_params** (*dict*) DistMult-specific hyperparams, passed to the model as a dictionary. Supported keys: - 'normalize_ent_emb' (bool): flag to indicate whether to normalize entity embeddings after each batch update (default: False). - 'negative_corruption_entities' Entities to be used for generation of corruptions while training. It can take the following values: all (default: all entities), batch (entities present in each batch), list of entities or an int (which indicates how many entities that should be used for corruption generation). - corrupt_sides: Specifies how to generate corruptions for training. Takes values s, o, s+o or any combination passed as a list ``` Example: embedding_model_params={'normalize_ent_emb': False} ``` - **optimizer** (*string*) The optimizer used to minimize the loss function. Choose between 'sgd', 'adagrad', 'adam', 'momentum'. - **optimizer_params** (dict) Arguments specific to the optimizer, passed as a dictionary. Supported keys: - 'lr' (float): learning rate (used by all the optimizers). Default: 0.1. - 'momentum' (float): learning momentum (only used when optimizer=momentum). Default: 0.9. Example: optimizer_params={'lr': 0.01} - **loss** (*string*) The type of loss function to use during training. - pairwise the model will use pairwise margin-based loss function. - nll the model will use negative loss likelihood. - absolute_margin the model will use absolute margin likelihood. - self_adversarial the model will use adversarial sampling loss function. - multiclass_nll the model will use multiclass nll loss. Switch to multiclass loss defined in [aC15] by passing 'corrupt_sides' as ['s','o'] to embedding_model_params. To use loss defined in [KBK17] pass 'corrupt_sides' as 'o' to embedding_model_params - loss_params (dict) Dictionary of loss-specific hyperparameters. See *loss func*tions documentation for additional details. ``` Example: optimizer_params={'lr': 0.01} if loss='pairwise'. ``` - regularizer (string) The regularization strategy to use with the loss function. - None: the model will not use any regularizer (default) - 'LP': the model will use L1, L2 or L3 based on the value of regularizer_params['p'] (see below). - **regularizer_params** (dict) Dictionary of regularizer-specific hyperparameters. See the *regularizers* documentation for additional details. ``` Example: regularizer_params={'lambda': 1e-5, 'p': 2} if regularizer='LP'. ``` • verbose (bool) - Verbose mode ``` fit (X, early_stopping=False, early_stopping_params={}) Train an DistMult. ``` The model is trained on a training set X using the training protocol described in [TWR+16]. #### **Parameters** - **X** (ndarray, shape [n, 3]) The training triples - early_stopping (bool) Flag to enable early stopping (default:False). If set to True, the training loop adopts the following early stopping heuristic: - The model will be trained regardless of early stopping for burn in epochs. - Every check_interval epochs the method will compute the metric specified in criteria. If such metric decreases for stop_interval checks, we stop training early. Note the metric is computed on x_valid. This is usually a validation set that you held out. Also, because criteria is a ranking metric, it requires generating negatives. Entities used to generate corruptions can be specified, as long as the side(s) of a triple to corrupt. The method supports filtered metrics, by passing an array of positives to x_{filter} . This will be used to filter the negatives generated on the fly (i.e. the corruptions). **Note:** Keep in mind the early stopping criteria may introduce a certain overhead (caused by the metric computation). The goal is to strike a good trade-off between such overhead and saving training epochs. A common approach is to use MRR unfiltered: ``` early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` Note the size of validation set also contributes to such overhead. In most cases a smaller validation set would be enough. • **early_stopping_params** (*dictionary*) – Dictionary of hyperparameters for the early stopping heuristics. The following string keys are supported: - 'x_valid': ndarray, shape [n, 3]: Validation set to be used for early stopping. - 'criteria': string: criteria for early stopping 'hits10', 'hits3', 'hits1' or 'mrr'(default). - 'x_filter': ndarray, shape [n, 3]: Positive triples to use as filter if a 'filtered' early stopping criteria is desired (i.e. filtered-MRR if 'criteria': 'mrr'). Note this will affect training time (no filter by default). - 'burn_in': int: Number of epochs to pass before kicking in early stopping (default: 100). - check_interval': int : Early stopping interval after burn-in (default:10). - 'stop_interval': int: Stop if criteria is performing worse over n consecutive checks (default: 3) - 'corruption_entities': List of entities to be used for corruptions. If 'all', it uses all entities (default: 'all') - 'corrupt side': Specifies which side to corrupt. 's', 'o', 's+o' (default) ``` Example: early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` get embeddings (entities, embedding type='entity') Get the embeddings of entities or relations. **Note:** Use ampligraph.utils.create_tensorboard_visualizations() to visualize the embeddings with TensorBoard. #### **Parameters** - **entities** (array-like, dtype=int, shape=[n]) The entities (or relations) of interest. Element of the vector must be the original string literals, and not internal IDs. - **embedding_type** (*string*) If 'entity', the entities argument will be considered as a list of knowledge graph entities
(i.e. nodes). If set to 'relation', they will be treated as relation types instead (i.e. predicates). **Returns** embeddings – An array of k-dimensional embeddings. ## Return type ndarray, shape [n, k] ``` predict (X, from idx=False, get ranks=False) ``` Predict the scores of triples using a trained embedding model. The function returns raw scores generated by the model. **Note:** To obtain probability estimates, use a logistic sigmoid: #### **Parameters** - **X** (ndarray, shape [n, 3]) The triples to score. - **from_idx** (bool) If True, will skip conversion to internal IDs. (default: False). - **get_ranks** (bool) Flag to compute ranks by scoring against corruptions (default: False). #### Returns - scores predict (ndarray, shape [n]) The predicted scores for input triples X. - rank (ndarray, shape [n]) Ranks of the triples (only returned if get_ranks=True. ### **ComplEx** Complex embeddings (ComplEx) The ComplEx model [TWR+16] is an extension of the $ampligraph.latent_features.DistMult$ bilinear diagonal model. ComplEx scoring function is based on the trilinear Hermitian dot product in \mathcal{C} : ``` f_{ComplEx} = Re(\langle \mathbf{r}_p, \mathbf{e}_s, \overline{\mathbf{e}_o} \rangle) ``` Note that because embeddings are in C, ComplEx uses twice as many parameters as ampligraph. $latent_features.DistMult$. # **Examples** ``` >>> import numpy as np >>> from ampligraph.latent_features import ComplEx >>> model = ComplEx(batches_count=1, seed=555, epochs=20, k=10, >>> loss='pairwise', loss_params={'margin':1}, >>> regularizer='LP', regularizer_params={'lambda':0.1}) >>> X = np.array([['a', 'y', 'b'], ['b', 'y', 'a'], >>> ['a', 'y', 'c'], >>> ['c', 'y', 'a'], >>> ['a', 'y', 'd'], >>> ['c', 'y', 'd'], >>> ['b', 'y', 'c'], >>> ['f', 'y', 'e']]) >>> model.fit(X) >>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']])) [-0.31336197, 0.07829369] >>> model.get_embeddings(['f','e'], embedding_type='entity') array([[0.17496692, 0.15856805, 0.2549046 , 0.21418071, -0.00980021, 0.06208976, -0.2573946, 0.01115128, -0.10728686, 0.40512595, -0.12340491, -0.11021495, 0.28515074, 0.34275156, 0.58547366, 0.03383447, -0.37839213, 0.1353071, 0.50376487, -0.26477185], [-0.19194135, 0.20568603, 0.04714957, 0.4366147, 0.07175589, 0.5740745 , 0.28201544, 0.3266275 , -0.06701915, 0.29062983, -0.21265475, 0.5720126, -0.05321272, 0.04141249, 0.01574909, -0.11786222, 0.30488515, 0.34970865, 0.23362857, -0.55025095]], dtype=float32) ``` #### **Methods** | init([k, eta, epochs, batches_count,]) | Initialize an EmbeddingModel | |--|--| | <pre>fit(X[, early_stopping, early_stopping_params])</pre> | Train a ComplEx model. | | <pre>get_embeddings(entities[, embedding_type])</pre> | Get the embeddings of entities or relations. | | <pre>predict(X[, from_idx, get_ranks])</pre> | Predict the scores of triples using a trained embed- | | | ding model. | ``` __init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-ding_model_params={'corrupt_sides': ['s+o'], 'negative_corruption_entities': 'all'}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, verbose=False} Initialize an EmbeddingModel ``` Also creates a new Tensorflow session for training. #### **Parameters** - **k** (*int*) Embedding space dimensionality - eta (int) The number of negatives that must be generated at runtime during training for each positive. - **epochs** (*int*) The iterations of the training loop. - **batches_count** (*int*) The number of batches in which the training set must be split during the training loop. - **seed** (*int*) The seed used by the internal random numbers generator. - **embedding_model_params** (*dict*) ComplEx-specific hyperparams: - 'negative_corruption_entities' Entities to be used for generation of corruptions while training. It can take the following values: all (default: all entities), batch (entities present in each batch), list of entities or an int (which indicates how many entities that should be used for corruption generation). - corrupt_sides: Specifies how to generate corruptions for training. Takes values s, o, s+o or any combination passed as a list - **optimizer** (*string*) The optimizer used to minimize the loss function. Choose between 'sgd', 'adagrad', 'adam', 'momentum'. - **optimizer_params** (dict) Arguments specific to the optimizer, passed as a dictionary. Supported keys: - 'lr' (float): learning rate (used by all the optimizers). Default: 0.1. - 'momentum' (float): learning momentum (only used when optimizer=momentum). Default: 0.9. Example: optimizer_params={'lr': 0.01} - **loss** (*string*) The type of loss function to use during training. - pairwise the model will use pairwise margin-based loss function. - nll the model will use negative loss likelihood. - absolute_margin the model will use absolute margin likelihood. - self_adversarial the model will use adversarial sampling loss function. - multiclass_nll the model will use multiclass nll loss. Switch to multiclass loss defined in [aC15] by passing 'corrupt_sides' as ['s','o'] to embedding_model_params. To use loss defined in [KBK17] pass 'corrupt_sides' as 'o' to embedding_model_params - loss_params (dict) Dictionary of loss-specific hyperparameters. See *loss functions* documentation for additional details. Example: optimizer_params={'lr': 0.01} if loss='pairwise'. - regularizer (string) The regularization strategy to use with the loss function. - None: the model will not use any regularizer (default) - 'LP': the model will use L1, L2 or L3 based on the value of regularizer_params['p'] (see below). - **regularizer_params** (dict) Dictionary of regularizer-specific hyperparameters. See the *regularizers* documentation for additional details. Example: regularizer_params={'lambda': 1e-5, 'p': 2} if regularizer='LP'. • **verbose** (bool) - Verbose mode **fit** (*X*, early_stopping=False, early_stopping_params={}) Train a ComplEx model. The model is trained on a training set X using the training protocol described in [TWR+16]. #### **Parameters** - **X** (ndarray, shape [n, 3]) The training triples - **early_stopping** (bool) Flag to enable early stopping (default:False). If set to True, the training loop adopts the following early stopping heuristic: - The model will be trained regardless of early stopping for burn_in epochs. - Every check_interval epochs the method will compute the metric specified in criteria. If such metric decreases for stop_interval checks, we stop training early. Note the metric is computed on x_valid. This is usually a validation set that you held out. Also, because criteria is a ranking metric, it requires generating negatives. Entities used to generate corruptions can be specified, as long as the side(s) of a triple to corrupt. The method supports filtered metrics, by passing an array of positives to x_filter. This will be used to filter the negatives generated on the fly (i.e. the corruptions). **Note:** Keep in mind the early stopping criteria may introduce a certain overhead (caused by the metric computation). The goal is to strike a good trade-off between such overhead and saving training epochs. A common approach is to use MRR unfiltered: ``` early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` Note the size of validation set also contributes to such overhead. In most cases a smaller validation set would be enough. • **early_stopping_params** (dictionary) – Dictionary of hyperparameters for the early stopping heuristics. The following string keys are supported: - 'x_valid': ndarray, shape [n, 3]: Validation set to be used for early stopping. - 'criteria': string: criteria for early stopping 'hits10', 'hits3', 'hits1' or 'mrr'(default). - 'x_filter': ndarray, shape [n, 3]: Positive triples to use as filter if a 'filtered' early stopping criteria is desired (i.e. filtered-MRR if 'criteria': 'mrr'). Note this will affect training time (no filter by default). - 'burn_in': int: Number of epochs to pass before kicking in early stopping (default: 100). - **check_interval**': int : Early stopping interval after burn-in (default:10). - 'stop_interval': int : Stop if criteria is performing worse over n consecutive checks (default: 3) - 'corruption_entities': List of entities to be used for corruptions. If 'all', it uses all entities (default: 'all') - 'corrupt_side': Specifies which side to corrupt. 's', 'o', 's+o' (default) ``` Example: early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` get_embeddings (entities, embedding_type='entity') Get the embeddings of entities or relations. **Note:** Use ampligraph.utils.create_tensorboard_visualizations() to visualize the embeddings with TensorBoard. #### **Parameters** - **entities** (array-like, dtype=int, shape=[n]) The entities (or relations) of interest. Element of the vector must be the original string literals, and not internal IDs. - **embedding_type** (*string*) If 'entity', the entities argument will be considered as a list of knowledge graph entities (i.e. nodes). If set to 'relation', they will be treated as relation types instead (i.e. predicates). **Returns** embeddings – An array of k-dimensional embeddings. **Return type** ndarray, shape [n, k] ``` predict (X, from_idx=False, get_ranks=False) ``` Predict the scores of triples using a trained embedding model. The function returns raw scores generated by the model. **Note:** To obtain probability estimates, use a logistic sigmoid: #### **Parameters** - **X** (ndarray, shape [n, 3]) The triples to score. - **from_idx** (bool) If True, will skip conversion to internal IDs. (default: False). - **get_ranks** (bool) Flag to compute ranks by scoring against corruptions (default: False). #### Returns • scores_predict (ndarray, shape [n]) – The predicted scores for input triples X. • rank (ndarray, shape [n]) - Ranks of the triples
(only returned if get ranks=True. #### HolE ``` epochs=100. class ampligraph.latent features.HolE (k=100, eta=2. seed=0, batches count=100, embed- ding_model_params={'corrupt_sides': ['s+o'], 'negative_corruption_entities': 'all'}, opti- mizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}\}, regularizer=None, regularizer_params={}, verbose=False) ``` Holographic Embeddings The HolE model [NRP+16] as re-defined by Hayashi et al. [HS17]: $$f_{HolE} = \frac{2}{n} f_{ComplEx}$$ # **Examples** ``` >>> import numpy as np >>> from ampligraph.latent_features import HolE >>> model = HolE(batches_count=1, seed=555, epochs=20, k=10, loss='pairwise', loss_params={'margin':1}, regularizer='LP', regularizer_params={'lambda':0.1}) >>> >>> >>> X = np.array([['a', 'y', 'b'], ['b', 'y', 'a'], >>> ['a', 'y', 'c'], >>> ['c', 'y', 'a'], >>> ['a', 'y', 'd'], >>> ['c', 'y', 'd'], >>> ['b', 'y', 'c'], ['f', 'y', 'e']]) >>> >>> model.fit(X) >>> model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']]), get_ranks=True) ([-0.06213863, 0.01563319], [13, 3]) >>> model.get_embeddings(['f','e'], embedding_type='entity') array([[0.17335348, 0.15826802, 0.24862595, 0.21404941, -0.00968813, 0.06185953, -0.24956754, 0.01114257, -0.1038138, 0.40461722, -0.12298391, -0.10997348, 0.28220937, 0.34238952, 0.58363295, 0.03315138, -0.37830347, 0.13480346, 0.49922466, -0.26328272], [-0.19098252, 0.20133668, 0.04635337, 0.4364128, 0.07014864, 0.5713923 , 0.28131518, 0.31721675, -0.06636801, 0.2848032 , -0.2121708, 0.56917167, -0.05311433, 0.03093261, 0.01571475, -0.11373658, 0.29417998, 0.34896123, 0.22993243, -0.5499186]], dtype=float32) ``` #### Methods _init__([k, eta, epochs, batches_count, ...]) Initialize an EmbeddingModel Continued on next page | Table | 8 – | continued | from | previous | page | |-------|-----|------------|---------|----------|------| | IUDIC | • | COLLULIACA | 11 0111 | PICVICUS | page | | <pre>fit(X[, early_stopping, early_stopping_params])</pre> | Train a HolE model. | |--|--| | <pre>get_embeddings(entities[, embedding_type])</pre> | Get the embeddings of entities or relations. | | <pre>predict(X[, from_idx, get_ranks])</pre> | Predict the scores of triples using a trained embed- | | | ding model. | __init__(k=100, eta=2, epochs=100, batches_count=100, seed=0, embed-ding_model_params={'corrupt_sides': ['s+o'], 'negative_corruption_entities': 'all'}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, verbose=False) Initialize an EmbeddingModel Also creates a new Tensorflow session for training. ## **Parameters** - **k** (*int*) Embedding space dimensionality - eta (int) The number of negatives that must be generated at runtime during training for each positive. - **epochs** (*int*) The iterations of the training loop. - **batches_count** (*int*) The number of batches in which the training set must be split during the training loop. - **seed** (*int*) The seed used by the internal random numbers generator. - **embedding_model_params** (*dict*) HolE-specific hyperparams: - negative_corruption_entities Entities to be used for generation of corruptions while training. It can take the following values : all (default: all entities), batch (entities present in each batch), list of entities or an int (which indicates how many entities that should be used for corruption generation). - corrupt_sides: Specifies how to generate corruptions for training. Takes values s, o, s+o or any combination passed as a list - **optimizer** (*string*) The optimizer used to minimize the loss function. Choose between 'sgd', 'adagrad', 'adam', 'momentum'. - **optimizer_params** (*dict*) Arguments specific to the optimizer, passed as a dictionary. Supported keys: - 'lr' (float): learning rate (used by all the optimizers). Default: 0.1. - 'momentum' (float): learning momentum (only used when optimizer=momentum). Default: 0.9. Example: optimizer_params={'lr': 0.01} - **loss** (*string*) The type of loss function to use during training. - pairwise the model will use pairwise margin-based loss function. - nll the model will use negative loss likelihood. - absolute_margin the model will use absolute margin likelihood. - self_adversarial the model will use adversarial sampling loss function. - multiclass_nll the model will use multiclass nll loss. Switch to multiclass loss defined in [aC15] by passing 'corrupt_sides' as ['s','o'] to embedding_model_params. To use loss defined in [KBK17] pass 'corrupt_sides' as 'o' to embedding model params - loss_params (dict) Dictionary of loss-specific hyperparameters. See *loss func*tions documentation for additional details. ``` Example: optimizer params={'lr': 0.01} if loss='pairwise'. ``` - regularizer (string) The regularization strategy to use with the loss function. - None: the model will not use any regularizer (default) - 'LP': the model will use L1, L2 or L3 based on the value of regularizer_params['p'] (see below). - **regularizer_params** (dict) Dictionary of regularizer-specific hyperparameters. See the *regularizers* documentation for additional details. ``` Example: regularizer_params={'lambda': 1e-5, 'p': 2} if regularizer='LP'. ``` • verbose (bool) - Verbose mode ``` fit (X, early_stopping=False, early_stopping_params={}) Train a HolE model. ``` The model is trained on a training set X using the training protocol described in [NRP+16]. #### **Parameters** - **X** (ndarray, shape [n, 3]) The training triples - **early_stopping** (bool) Flag to enable early stopping (default:False). If set to True, the training loop adopts the following early stopping heuristic: - The model will be trained regardless of early stopping for burn_in epochs. - Every check_interval epochs the method will compute the metric specified in criteria. If such metric decreases for stop_interval checks, we stop training early. Note the metric is computed on x_valid. This is usually a validation set that you held out. Also, because criteria is a ranking metric, it requires generating negatives. Entities used to generate corruptions can be specified, as long as the side(s) of a triple to corrupt. The method supports filtered metrics, by passing an array of positives to x_{filter} . This will be used to filter the negatives generated on the fly (i.e. the corruptions). **Note:** Keep in mind the early stopping criteria may introduce a certain overhead (caused by the metric computation). The goal is to strike a good trade-off between such overhead and saving training epochs. A common approach is to use MRR unfiltered: ``` early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` Note the size of validation set also contributes to such overhead. In most cases a smaller validation set would be enough. • **early_stopping_params** (dictionary) – Dictionary of hyperparameters for the early stopping heuristics. The following string keys are supported: - 'x_valid': ndarray, shape [n, 3]: Validation set to be used for early stopping. - 'criteria': string: criteria for early stopping 'hits10', 'hits1' or 'mrr'(default). - 'x_filter': ndarray, shape [n, 3]: Positive triples to use as filter if a 'filtered' early stopping criteria is desired (i.e. filtered-MRR if 'criteria':'mrr'). Note this will affect training time (no filter by default). - 'burn_in': int: Number of epochs to pass before kicking in early stopping (default: 100). - **check_interval**': int : Early stopping interval after burn-in (default:10). - 'stop_interval': int: Stop if criteria is performing worse over n consecutive checks (default: 3) - 'corruption_entities': List of entities to be used for corruptions. If 'all', it uses all entities (default: 'all') - 'corrupt_side': Specifies which side to corrupt. 's', 'o', 's+o' (default) ``` Example: early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` get_embeddings (entities, embedding_type='entity') Get the embeddings of entities or relations. Note: Use $ampligraph.utils.create_tensorboard_visualizations$ () to visualize the embeddings with TensorBoard. #### **Parameters** - **entities** (array-like, dtype=int, shape=[n]) The entities (or relations) of interest. Element of the vector must be the original string literals, and not internal IDs. - **embedding_type** (*string*) If 'entity', the entities argument will be considered as a list of knowledge graph entities (i.e. nodes). If set to 'relation', they will be treated as relation types instead (i.e. predicates). **Returns embeddings** – An array of k-dimensional embeddings. **Return type** ndarray, shape [n, k] ``` predict (X, from_idx=False, get_ranks=False) ``` Predict the scores of triples using a trained embedding model. The function returns raw scores generated by the model. **Note:** To obtain probability estimates, use a logistic sigmoid: #### **Parameters** - **X** (ndarray, shape [n, 3]) The triples to score. - **from_idx** (bool) If True, will skip conversion to internal IDs. (default: False). - **get_ranks** (bool) Flag to compute ranks by scoring against corruptions (default: False). #### **Returns** - scores_predict (ndarray, shape [n]) The predicted scores for input triples X. - rank (ndarray, shape [n]) Ranks of the triples (only returned if get_ranks=True. ## **Anatomy of a Model** Knowledge graph embeddings are learned by training a neural architecture over a graph. Although such architectures vary, the training phase always consists in minimizing a loss function \mathcal{L} that includes a scoring function $f_m(t)$, i.e. a model-specific function that assigns a score to a triple t = (sub, pred, obj). AmpliGraph models include the following components: - Scoring function f(t) - Loss function L - Optimization algorithm - Negatives generation strategy AmpliGraph comes with a number of such components. They can be used in any combination to come up
with a model that performs sufficiently well for the dataset of choice. AmpliGraph features a number of abstract classes that can be extended to design new models: | EmbeddingModel([k, eta, epochs,]) | Abstract class for embedding models | |---|-------------------------------------| | Loss(eta, hyperparam_dict[, verbose]) | Abstract class for loss function. | | Regularizer(hyperparam_dict[, verbose]) | Abstract class for Regularizer. | ## **EmbeddingModel** ``` \textbf{class} \text{ ampligraph.latent_features.} \textbf{EmbeddingModel} \ (k=100, \quad eta=2, \quad epochs=100, \\ batches_count=100, \quad seed=0, \\ embedding_model_params=\{\}, \\ optimizer='adam', \quad optimizer_params=\{'lr': \quad 0.0005\}, \\ loss='nll', \quad loss_params=\{\}, \quad regularizer_None, \quad regularizer_params=\{\}, \\ verbose=False) ``` Abstract class for embedding models AmpliGraph neural knowledge graph embeddings models extend this class and its core methods. ## **Methods** | init([k, eta, epochs, batches_count,]) | Initialize an EmbeddingModel | |--|---| | <pre>fit(X[, early_stopping, early_stopping_params])</pre> | Train an EmbeddingModel (with optional early stop- | | | ping). | | <pre>get_embeddings(entities[, embedding_type])</pre> | Get the embeddings of entities or relations. | | <pre>predict(X[, from_idx, get_ranks])</pre> | Predict the scores of triples using a trained embed- | | | ding model. | | $_fn(e_s, e_p, e_o)$ | The scoring function of the model. | | _initialize_parameters() | Initialize parameters of the model. | | _get_model_loss(dataset_iterator) | Get the current loss including loss due to regulariza- | | | tion. | | <pre>get_embedding_model_params(output_dict)</pre> | save the model parameters in the dictionary. | | restore_model_params(in_dict) | Load the model parameters from the input dictionary. | | _save_trained_params() | After model fitting, save all the trained parameters in | | | trained_model_params in some order. | | _load_model_from_trained_params() | Load the model from trained params. | | _initialize_early_stopping() | Initializes and creates evaluation graph for early | | | stopping | | _perform_early_stopping_test(epoch) | perform regular validation checks and stop early if | | | the criteria is acheived :param epoch: current train- | | | ing epoch :type epoch: int | | <pre>configure_evaluation_protocol([config])</pre> | Set the configuration for evaluation | | set_filter_for_eval(x_filter) | Set the filter to be used during evaluation (fil- | | | tered_corruption = corruptions - filter). | | _initialize_eval_graph() | Initialize the evaluation graph. | | end_evaluation() | End the evaluation and close the Tensorflow session. | __init__ (k=100, eta=2, epochs=100, batches_count=100, seed=0, embedding_model_params={}, optimizer='adam', optimizer_params={'lr': 0.0005}, loss='nll', loss_params={}, regularizer=None, regularizer_params={}, verbose=False) Initialize an EmbeddingModel Also creates a new Tensorflow session for training. #### **Parameters** • **k** (*int*) – Embedding space dimensionality - eta (int) The number of negatives that must be generated at runtime during training for each positive. - **epochs** (*int*) The iterations of the training loop. - **batches_count** (*int*) The number of batches in which the training set must be split during the training loop. - **seed** (*int*) The seed used by the internal random numbers generator. - **embedding_model_params** (dict) Model-specific hyperparams, passed to the model as a dictionary. Refer to model-specific documentation for details. - **optimizer** (*string*) The optimizer used to minimize the loss function. Choose between 'sgd', 'adagrad', 'adam', 'momentum'. - **optimizer_params** (dict) Arguments specific to the optimizer, passed as a dictionary. Supported keys: - 'lr' (float): learning rate (used by all the optimizers). Default: 0.1. - 'momentum' (float): learning momentum (only used when optimizer=momentum). Default: 0.9. Example: optimizer_params={'lr': 0.01} - **loss** (*string*) The type of loss function to use during training. - pairwise the model will use pairwise margin-based loss function. - nll the model will use negative loss likelihood. - absolute_margin the model will use absolute margin likelihood. - self_adversarial the model will use adversarial sampling loss function. - multiclass_nll the model will use multiclass nll loss. Switch to multiclass loss defined in [aC15] by passing 'corrupt_sides' as ['s','o'] to embedding_model_params. To use loss defined in [KBK17] pass 'corrupt_sides' as 'o' to embedding_model_params - **loss_params** (*dict*) Dictionary of loss-specific hyperparameters. See *loss functions* documentation for additional details. ``` Example: optimizer_params={'lr': 0.01} if loss='pairwise'. ``` - regularizer (string) The regularization strategy to use with the loss function. - None: the model will not use any regularizer (default) - 'LP': the model will use L1, L2 or L3 based on the value of regularizer_params['p'] (see below). - regularizer_params (dict) Dictionary of regularizer-specific hyperparameters. See the *regularizers* documentation for additional details. ``` Example: regularizer_params={'lambda': 1e-5, 'p': 2} if regularizer='LP'. ``` • **verbose** (bool) – Verbose mode ``` fit (X, early_stopping=False, early_stopping_params={}) Train an EmbeddingModel (with optional early stopping). ``` The model is trained on a training set X using the training protocol described in [TWR+16]. #### **Parameters** - **X** (ndarray, shape [n, 3]) The training triples - early_stopping (bool) Flag to enable early stopping (default:False) - **early_stopping_params** (*dictionary*) Dictionary of hyperparameters for the early stopping heuristics. The following string keys are supported: - 'x_valid': ndarray, shape [n, 3]: Validation set to be used for early stopping. - 'criteria': string: criteria for early stopping 'hits10', 'hits3', 'hits1' or 'mrr'(default). - 'x_filter': ndarray, shape [n, 3] [Positive triples to use as filter if a 'filtered' early] stopping criteria is desired (i.e. filtered-MRR if 'criteria':'mrr'). Note this will affect training time (no filter by default). - 'burn_in': int: Number of epochs to pass before kicking in early stopping (default: 100). - **check_interval**': int : Early stopping interval after burn-in (default:10). - 'stop_interval': int: Stop if criteria is performing worse over n consecutive checks (default: 3) - 'corruption_entities': List of entities to be used for corruptions. If 'all', it uses all entities (default: 'all') - 'corrupt_side': Specifies which side to corrupt. 's', 'o', 's+o' (default) ``` Example: early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` get_embeddings (entities, embedding_type='entity') Get the embeddings of entities or relations. **Note:** Use ampligraph.utils.create_tensorboard_visualizations() to visualize the embeddings with TensorBoard. ### **Parameters** - **entities** (array-like, dtype=int, shape=[n]) The entities (or relations) of interest. Element of the vector must be the original string literals, and not internal IDs. - **embedding_type** (*string*) If 'entity', the entities argument will be considered as a list of knowledge graph entities (i.e. nodes). If set to 'relation', they will be treated as relation types instead (i.e. predicates). **Returns** embeddings – An array of k-dimensional embeddings. **Return type** ndarray, shape [n, k] predict (X, from_idx=False, get_ranks=False) Predict the scores of triples using a trained embedding model. The function returns raw scores generated by the model. **Note:** To obtain probability estimates, use a logistic sigmoid: #### **Parameters** - **X** (ndarray, shape [n, 3]) The triples to score. - **from_idx** (bool) If True, will skip conversion to internal IDs. (default: False). - **get_ranks** (bool) Flag to compute ranks by scoring against corruptions (default: False). #### Returns - scores_predict (ndarray, shape [n]) The predicted scores for input triples X. - rank (ndarray, shape [n]) Ranks of the triples (only returned if get_ranks=True. ``` fn(e s, e p, e o) ``` The scoring function of the model. Assigns a score to a list of triples, with a model-specific strategy. Triples are passed as lists of subject, predicate, object embeddings. This function must be overridden by every model to return corresponding score. #### **Parameters** - **e_s** (*Tensor*, shape [n]) The embeddings of a list of subjects. - **e_p** (*Tensor*, shape [n]) The embeddings of a list of predicates. - **e_o** (*Tensor*, shape [n]) The embeddings of a list of objects. **Returns** score – The operation corresponding to the scoring function. Return type TensorFlow operation ``` \verb|_initialize_parameters|() ``` Initialize parameters of the model. This function creates and initializes entity and relation embeddings (with size k). Overload this function if the parameters needs to be initialized differently. ``` _get_model_loss(dataset_iterator) ``` **Get the current loss including loss due to regularization.** This function must be overridden if the model uses combination of different losses(eg: VAE) Parameters dataset_iterator (tf.data.Iterator) - Dataset iterator **Returns loss** – The loss value that must be minimized. **Return type** tf.Tensor #### get_embedding_model_params (output_dict) save the model parameters in the dictionary. **Parameters output_dict** (dictionary) – Dictionary of saved params. It's the duty of the model to save all the variables correctly, so that it can be used for restoring later. ## restore_model_params (in_dict) Load the model parameters from the input dictionary. **Parameters in_dict** (dictionary) – Dictionary of saved params. It's the duty of the model to load the variables correctly ####
_save_trained_params() After model fitting, save all the trained parameters in trained_model_params in some order. The order would be useful for loading the model. This method must be overridden if the model has any other parameters (apart from entity-relation embeddings) ## _load_model_from_trained_params() Load the model from trained params. While restoring make sure that the order of loaded parameters match the saved order. It's the duty of the embedding model to load the variables correctly. This method must be overridden if the model has any other parameters (apart from entity-relation embeddings) #### _initialize_early_stopping() Initializes and creates evaluation graph for early stopping ## $\verb|_perform_early_stopping_test|(epoch)$ perform regular validation checks and stop early if the criteria is acheived :param epoch: current training epoch :type epoch: int **Returns** stopped – Flag to indicate if the early stopping criteria is acheived Return type bool Set the configuration for evaluation **Parameters config** (dictionary) – Dictionary of parameters for evaluation configuration. Can contain following keys: - **corruption_entities**: List of entities to be used for corruptions. If all, it uses all entities (default: all) - corrupt_side: Specifies which side to corrupt. s, o, s+o (default) - **default_protocol**: Boolean flag to indicate whether to use default protocol for evaluation. This computes scores for corruptions of subjects and objects and ranks them separately. This could have been done by evaluating s and o separately and then ranking but it slows down the performance. Hence this mode is used where s+o corruptions are generated at once but ranked separately for speed up.(default: False) #### set_filter_for_eval(x_filter) Set the filter to be used during evaluation (filtered_corruption = corruptions - filter). We would be using a prime number based assignment and product for do the filtering. We associate a unique prime number for subject entities, object entities and to relations. Product of three prime numbers is divisible only by those three prime numbers. So we generate this product for the filter triples and store it in a hash map. When corruptions are generated for a triple during evaluation, we follow a similar approach and look up the product of corruption in the above hash table. If the corrupted triple is present in the hashmap, it means that it was present in the filter list. **Parameters x_filter** (*ndarray*, *shape* [*n*, 3]) – Filter triples. If the generated corruptions are present in this, they will be removed. ## _initialize_eval_graph() Initialize the evaluation graph. Use prime number based filtering strategy (refer set_filter_for_eval()), if the filter is set ## end_evaluation() End the evaluation and close the Tensorflow session. #### Loss class ampligraph.latent_features.Loss(eta, hyperparam_dict, verbose=False) Abstract class for loss function. #### **Methods** | init(eta, hyperparam_dict[, verbose]) | Initialize Loss. | |---------------------------------------|---| | <pre>get_state(param_name)</pre> | Get the state value. | | _init_hyperparams(hyperparam_dict) | Initializes the hyperparameters needed by the algo- | | | rithm. | | _inputs_check(scores_pos, scores_neg) | Creates any dependencies that need to be checked | | | before performing loss computations | | apply(scores_pos, scores_neg) | Interface to external world. | | _apply(scores_pos, scores_neg) | Apply the loss function. | __init__ (eta, hyperparam_dict, verbose=False) Initialize Loss. ## **Parameters** - **eta** (*int*) number of negatives - **hyperparam_dict** (*dict*) dictionary of hyperparams. (Keys are described in the hyperparameters section) ## get_state (param_name) Get the state value. **Parameters** param_name (string) - name of the state for which one wants to query the value **Returns** the value of the corresponding state Return type param_value ## _init_hyperparams (hyperparam_dict) Initializes the hyperparameters needed by the algorithm. **Parameters** hyperparam_dict (dictionary) - Consists of key value pairs. The Loss will check the keys to get the corresponding params ``` inputs check (scores pos, scores neg) ``` Creates any dependencies that need to be checked before performing loss computations #### **Parameters** - **scores_pos** (*tf.Tensor*) A tensor of scores assigned to positive statements. - scores_neg (tf.Tensor) A tensor of scores assigned to negative statements. #### apply (scores_pos, scores_neg) Interface to external world. This function does the input checks, preprocesses input and finally applies loss function. #### **Parameters** - **scores_pos** (*tf.Tensor*) A tensor of scores assigned to positive statements. - scores_neg (tf.Tensor) A tensor of scores assigned to negative statements. **Returns** loss – The loss value that must be minimized. Return type tf.Tensor ``` _apply (scores_pos, scores_neg) ``` Apply the loss function. Every inherited class must implement this function. (All the TF code must go in this function.) #### **Parameters** - **scores_pos** (*tf.Tensor*) A tensor of scores assigned to positive statements. - scores_neg (tf.Tensor) A tensor of scores assigned to negative statements. **Returns** loss – The loss value that must be minimized. Return type tf.Tensor ## Regularizer class ampligraph.latent_features.Regularizer(hyperparam_dict, verbose=False) Abstract class for Regularizer. ## **Methods** | init(hyperparam_dict[, verbose]) | Initialize the regularizer. | |-----------------------------------|---| | <pre>get_state(param_name)</pre> | Get the state value. | | init_hyperparams(hyperparam_dict) | Initializes the hyperparameters needed by the algo- | | | rithm. | | apply(trainable_params) | Interface to external world. | | _apply(trainable_params) | Apply the regularization function. | __init__(hyperparam_dict, verbose=False) Initialize the regularizer. **Parameters** hyperparam_dict (dict) - dictionary of hyperparams (Keys are described in the hyperparameters section) get_state (param_name) Get the state value. Parameters param_name (string) - name of the state for which one wants to query the value **Returns** the value of the corresponding state Return type param_value _init_hyperparams (hyperparam_dict) Initializes the hyperparameters needed by the algorithm. **Parameters hyperparam_dict** (dictionary) – Consists of key value pairs. The regularizer will check the keys to get the corresponding params apply (trainable_params) Interface to external world. This function performs input checks, input pre-processing, and and applies the loss function. **Parameters trainable_params** (list, shape [n])—List of trainable params that should be regularized **Returns loss** – Regularization Loss Return type tf.Tensor **_apply** (trainable_params) Apply the regularization function. Every inherited class must implement this function. (All the TF code must go in this function.) **Parameters trainable_params** (list, shape [n]) - List of trainable params that should be regularized Returns loss – Regularization Loss Return type tf.Tensor ## **Scoring functions** Existing models propose scoring functions that combine the embeddings \mathbf{e}_s , \mathbf{r}_p , $\mathbf{e}_o \in \mathcal{R}^k$ of the subject, predicate, and object of a triple t = (s, p, o) according to different intuitions: • TransE [BUGD+13] relies on distances. The scoring function computes a similarity between the embedding of the subject translated by the embedding of the predicate and the embedding of the object, using the L_1 or L_2 norm $||\cdot||$: $$f_{TransE} = -||\mathbf{e}_s + \mathbf{r}_p - \mathbf{e}_o||_n$$ • DistMult [YYH+14] uses the trilinear dot product: $$f_{DistMult} = \langle \mathbf{r}_p, \mathbf{e}_s, \mathbf{e}_o \rangle$$ • Complex [TWR+16] extends DistMult with the Hermitian dot product: $$f_{ComplEx} = Re(\langle \mathbf{r}_p, \mathbf{e}_s, \overline{\mathbf{e}_o} \rangle)$$ • Hole [NRP+16] uses circular correlation. $$f_{HolE} = \mathbf{w}_r \cdot (\mathbf{e}_s \star \mathbf{e}_o) = \frac{1}{k} \mathcal{F}(\mathbf{w}_r) \cdot (\overline{\mathcal{F}(\mathbf{e}_s)} \odot \mathcal{F}(\mathbf{e}_o))$$ Other models such ConvE include convolutional layers [DMSR18] (will be available in AmpliGraph future releases). #### **Loss Functions** AmpliGraph includes a number of loss functions commonly used in literature. Each function can be used with any of the implemented models. Loss functions are passed to models as hyperparameter, and they can be thus used during model selection. | PairwiseLoss(eta[, loss_params, verbose]) | | | Pairwise, max-margin loss. | |--|--------------|-------------------------------|-----------------------------------| | AbsoluteMarginLoss(eta[, | loss_params, | ver- | Absolute margin, max-margin loss. | | bose]) | | | | | SelfAdversarialLoss(eta[, | loss_params, | ver- | Self adversarial sampling loss. | | bose]) | | | | | NLLLoss(eta[, loss_params, verbose]) | | Negative log-likelihood loss. | | | NLLMulticlass(eta[, loss_params, verbose]) | | | Multiclass NLL Loss. | #### **PairwiseLoss** class ampligraph.latent_features.PairwiseLoss(eta, loss_params={'margin': 1}, ver- Pairwise, max-margin loss. Introduced in [BUGD+13]. $$\mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}} \sum_{t^- \in \mathcal{C}} max(0, [\gamma + f_{model}(t^-; \Theta) - f_{model}(t^+; \Theta)])$$ where γ is the margin, \mathcal{G} is the set of positives, \mathcal{C} is the set of corruptions, $f_{model}(t;\Theta)$ is the model-specific scoring function. #### Methods | init(eta[, loss_params, verbose]) | Initialize Loss. | | |-----------------------------------|------------------|--| |-----------------------------------|------------------|--| __init__(eta, loss_params={'margin': 1}, verbose=False) Initialize Loss. ####
Parameters - eta (int) number of negatives - loss params (dict) Dictionary of loss-specific hyperparams: - 'margin': (float). Margin to be used in pairwise loss computation (default: 1) Example: loss_params={'margin': 1} ## **AbsoluteMarginLoss** class ampligraph.latent_features.AbsoluteMarginLoss(eta, loss_params={'margin': 1}, Absolute margin, max-margin loss. Introduced in [HOSM17]. $$\mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}} \sum_{t^- \in \mathcal{C}} f_{model}(t^-; \Theta) - max(0, [\gamma - f_{model}(t^+; \Theta)])$$ where γ is the margin, \mathcal{G} is the set of positives, \mathcal{C} is the set of corruptions, $f_{model}(t;\Theta)$ is the model-specific scoring function. ## **Methods** _init__(eta[, loss_params, verbose]) Initialize Loss __init__ (eta, loss_params={'margin': 1}, verbose=False) Initialize Loss #### **Parameters** - eta (int) number of negatives - **loss_params** (*dict*) Dictionary of loss-specific hyperparams: - 'margin': float. Margin to be used in pairwise loss computation (default:1) Example: loss_params={'margin': 1} #### **SelfAdversarialLoss** Self adversarial sampling loss. Introduced in [SDNT19]. $$\mathcal{L} = -\log \sigma(\gamma + f_{model}(\mathbf{s}, \mathbf{o})) - \sum_{i=1}^{n} p(h_{i}^{'}, r, t_{i}^{'}) \log \sigma(-f_{model}(\mathbf{s}_{i}^{'}, \mathbf{o}_{i}^{'}) - \gamma)$$ where $\mathbf{s}, \mathbf{o} \in \mathcal{R}^k$ are the embeddings of the subject and object of a triple $t = (s, r, o), \gamma$ is the margin, σ the sigmoid function, and $p(s_i', r, o_i')$ is the negatives sampling distribution which is defined as: $$p(s_j', r, o_j' | \{(s_i, r_i, o_i)\}) = \frac{\exp \alpha f_{model}(\mathbf{s_j'}, \mathbf{o_j'})}{\sum_i \exp \alpha f_{model}(\mathbf{s_i'}, \mathbf{o_j'})}$$ where α is the temperature of sampling, f_{model} is the scoring function of the desired embeddings model. ### **Methods** __init___(eta[, loss_params, verbose]) Initialize Loss __init__ (eta, loss_params={'alpha': 0.5, 'margin': 3}, verbose=False) Initialize Loss ## **Parameters** - eta (int) number of negatives - **loss_params** (*dict*) Dictionary of loss-specific hyperparams: - 'margin': (float). Margin to be used for loss computation (default: 1) - 'alpha': (float). Temperature of sampling (default:0.5) Example: loss_params={'margin': 1, 'alpha': 0.5} ## **NLLLoss** class ampligraph.latent_features.NLLLoss(eta, loss_params={}, verbose=False) Negative log-likelihood loss. As described in [TWR+16]. $$\mathcal{L}(\Theta) = \sum_{t \in G \cup \mathcal{C}} log(1 + exp(-y f_{model}(t; \Theta)))$$ where $y \in -1, 1$ is the label of the statement, \mathcal{G} is the set of positives, \mathcal{C} is the set of corruptions, $f_{model}(t; \Theta)$ is the model-specific scoring function. #### **Methods** ``` __init__(eta[, loss_params, verbose]) Initialize Loss. ``` ``` __init__ (eta, loss_params={}, verbose=False) Initialize Loss. ``` ## **Parameters** - eta (int) number of negatives - **loss_params** (*dict*) dictionary of hyperparams. No hyperparameters are required for this loss. #### **NLLMulticlass** class ampligraph.latent_features.NLLMulticlass(eta, loss_params={}, verbose=False) Multiclass NLL Loss. Introduced in [aC15] where both the subject and objects are corrupted (to use it in this way pass corrupt_sides = ['s', 'o'] to embedding_model_params). This loss was re-engineered in [KBK17] where only the object was corrupted to get improved performance (to use it in this way pass corrupt_sides = 'o' to embedding_model_params). $$\mathcal{L}(\mathcal{X}) = -\sum_{x_{e_1, e_2, r_k} \in X} \log p(e_2|e_1, r_k) - \sum_{x_{e_1, e_2, r_k} \in X} \log p(e_1|r_k, e_2)$$ ## **Examples** ``` >>> from ampligraph.latent_features import TransE >>> model = TransE(batches_count=1, seed=555, epochs=20, k=10, >>> embedding_model_params={'corrupt_sides':['s', 'o']}, >>> loss='multiclass_nll', loss_params={}) ``` ## **Methods** ___init___(eta[, loss_params, verbose]) Initialize Loss __init__(eta, loss_params={}, verbose=False) Initialize Loss #### **Parameters** - eta (int) number of negatives - **loss_params** (*dict*) Dictionary of loss-specific hyperparams: ## Regularizers AmpliGraph includes a number of regularizers that can be used with the *loss function*. LPRegularizer supports L1, L2, and L3. LPRegularizer([regularizer_params, verbose]) Performs LP regularization ## **LPRegularizer** Performs LP regularization $$\mathcal{L}(Reg) = \sum_{i=1}^{n} \lambda_i * \mid w_i \mid_p$$ where n is the number of model parameters, $p \in \{1, 2, 3\}$ is the p-norm and λ is the regularization weight. Example: if p=1 the function will perform L1 regularization. L2 regularization is obtained with p=2. #### Methods | init([regularizer_params, verbose]) | Initializes the hyperparameters needed by the algo- | |-------------------------------------|---| | | rithm. | __init__ (regularizer_params={'lambda': 1e-05, 'p': 2}, verbose=False) Initializes the hyperparameters needed by the algorithm. **Parameters regularizer_params** (dictionary) – Consists of key-value pairs. The regularizer will check the keys to get the corresponding params: - 'lambda': (float). Weight of regularization loss for each parameter (default: 1e-5) - 'p': (int): norm (default: 2) Example: regularizer_params={'lambda': 1e-5, 'p': 1} ## **Optimizers** The goal of the optimization procedure is learning optimal embeddings, such that the scoring function is able to assign high scores to positive statements and low scores to statements unlikely to be true. We support SGD-based optimizers provided by TensorFlow, by setting the optimizer argument in a model initializer. Best results are currently obtained with Adam. ## Saving/Restoring Models Models can be saved and restored from disk. This is useful to avoid re-training a model. More details in the utils module. ## 3.3.3 Evaluation The module includes performance metrics for neural graph embeddings models, along with model selection routines, negatives generation, and an implementation of the learning-to-rank-based evaluation protocol used in literature. #### **Metrics** Learning-to-rank metrics to evaluate the performance of neural graph embedding models. | rank_score(y_true, y_pred[, pos_lab]) | Rank of a triple | |---------------------------------------|----------------------------| | mrr_score(ranks) | Mean Reciprocal Rank (MRR) | | mr_score(ranks) | Mean Rank (MR) | | hits_at_n_score(ranks, n) | Hits@N | ## rank score ``` ampligraph.evaluation.rank_score(y_true, y_pred, pos_lab=1) Rank of a triple ``` The rank of a positive element against a list of negatives. $rank_{(s,p,o)_i}$ ### **Parameters** - **y_true** (ndarray, shape [n]) An array of binary labels. The array only contains one positive. - **y_pred** (*ndarray*, *shape* [n]) An array of scores, for the positive element and the n-1 negatives. - **pos_lab** (*int*) The value of the positive label (default = 1) **Returns** rank – The rank of the positive element against the negatives. Return type int ## **Examples** ``` >>> import numpy as np >>> from ampligraph.evaluation.metrics import rank_score >>> y_pred = np.array([.434, .65, .21, .84]) >>> y_true = np.array([0, 0, 1, 0]) >>> rank_score(y_true, y_pred) 4 ``` #### mrr score ``` ampligraph.evaluation.mrr_score(ranks) ``` Mean Reciprocal Rank (MRR) The function computes the mean of the reciprocal of elements of a vector of rankings ranks. It is used in conjunction with the learning to rank evaluation protocol of ampligraph.evaluation. evaluate performance(). It is formally defined as follows: $$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_{(s,p,o)_i}}$$ where Q is a set of triples and (s, p, o) is a triple $\in Q$. **Note:** This metric is similar to mean rank (MR) <code>ampligraph.evaluation.mr_score()</code>. Instead of averaging ranks, it averages their reciprocals. This is done to obtain a metric which is more robust to outliers. Consider the following example. Each of the two positive triples identified by \star are ranked against four corruptions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple ranks first. The resulting MRR is: ``` S 0 score rank р Jack born_in Ireland 0.789 1 0.753 Jack born_in Italy 0.695 born_in Germany Jack 0.456 Jack born_in China 4 Jack born_in Thomas 0.234 р score rank friend_with 0.901 Jack Thomas 1 friend_with China 0.345 2 Jack friend_with 0.293 3 Jack Italy friend_with 0.201 Jack Ireland 4 Jack friend_with Germany 0.156 MRR=0.75 ``` **Parameters ranks** (ndarray, shape [n]) – Input ranks of n positive statements. Returns hits_n_score - The MRR score Return type float ## **Examples** ``` >>> import numpy as np >>> from ampligraph.evaluation.metrics import mrr_score >>> rankings = np.array([1, 12, 6, 2]) >>> mrr_score(rankings) 0.4375 ``` #### mr score The function computes the mean of of a vector of rankings ranks. It can be used in conjunction with the learning to rank evaluation protocol of ampligraph.evaluation. evaluate_performance(). It is formally defined as follows: $$MR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} rank_{(s,p,o)_i}$$ where Q is a set of triples and (s, p, o) is a triple $\in Q$. **Note:** This metric is not robust to outliers. It is usually presented along the more reliable MRR ampligraph. evaluation.mrr_score(). Consider the following example. Each of the two positive triples identified by \star are ranked against four corruptions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple ranks first. The resulting MR is: ``` S 0 score rank р Jack born_in Ireland 0.789 1 0.753 2 Jack born_in Italy 0.695 born_in Germany Jack 0.456 Jack born_in China 4 Jack born_in Thomas 0.234 S р score rank Jack friend_with 0.901 1 Thomas friend_with 0.345 2 Jack China friend_with 0.293 3 Jack Italy friend_with 0.201 Jack Ireland 4 Jack friend_with Germany 0.156 5 MR=1.5 ``` ##
Examples ``` >>> from ampligraph.evaluation import mr_score >>> ranks= [5, 3, 4, 10, 1] >>> mr_score(ranks) 4.6 ``` ## hits_at_n_score ``` ampligraph.evaluation.hits_at_n_score (ranks, n) Hits@N ``` The function computes how many elements of a vector of rankings ranks make it to the top n positions. It can be used in conjunction with the learning to rank evaluation protocol of ampligraph.evaluation. evaluate_performance(). It is formally defined as follows: $$Hits@N = \sum_{i=1}^{|Q|} 1 \, ifrank_{(s,p,o)_i} \leq N$$ where Q is a set of triples and (s, p, o) is a triple $\in Q$. Consider the following example. Each of the two positive triples identified by * are ranked against four corruptions each. When scored by an embedding model, the first triple ranks 2nd, and the other triple ranks first. Hits@1 and Hits@3 are: ``` р 0 score rank Jack born_in Ireland 0.789 1 born_in Italy Jack 0.753 2 born_in Germany 0.695 Jack 3 born_in China 0.456 Jack 4 born_in Thomas Jack 0.234 S score rank g friend_with Thomas 1 Jack 0.901 Jack friend_with China 0.345 2 Jack friend_with Italy 0.293 3 Jack friend_with Ireland 0.201 4 Jack friend_with Germany 0.156 5 Hits@3=1.0 Hits@1=0.5 ``` ## **Parameters** - ranks (ndarray, shape [n]) Input ranks of n positive statements. - **n** (*int*) The maximum rank considered to accept a positive. Returns hits_n_score - The Hits@n score Return type float ## **Examples** ``` >>> import numpy as np >>> from ampligraph.evaluation.metrics import hits_at_n_score >>> rankings = np.array([1, 12, 6, 2]) >>> hits_at_n_score(rankings, n=3) 0.5 ``` ## **Negatives Generation** Negatives generation routines. These are corruption strategies based on the Local Closed-World Assumption (LCWA). ## generate_corruptions_for_eval Generate corruptions for evaluation. Create corruptions (subject and object) for a given triple x, in compliance with the local closed world assumption (LCWA), as described in [NMTG16]. **Note:** For filtering the corruptions, we adopt a hashing-based strategy to handle the set difference problem. This strategy is as described below: - We compute unique entities and relations in our dataset. - We assign unique prime numbers for entities (unique for subject and object separately) and for relations and create three separate hash tables. (these hash maps are input to this function) - For each triple in filter_triples, we get the prime numbers associated with subject, relation and object by mapping to their respective hash tables. We then compute the **prime product** for the filter triple. We store this triple product. - Since the numbers assigned to subjects, relations and objects are unique, their prime product is also unique. i.e. a triple (a, b, c) would have a different product compared to triple (c, b, a) as a, c of subject have different primes compared to a, c of object. - While generating corruptions for evaluation, we hash the triple's entities and relations and get the associated prime number and compute the **prime product for the corrupted triple**. - If this product is present in the products stored for the filter set, then we remove the corresponding corrupted triple (as it is a duplicate i.e. the corruption triple is present in filter_triples) - Using this approach we generate filtered corruptions for evaluation. **Execution Time:** This method takes ~20 minutes on FB15K using ComplEx (Intel Xeon Gold 6142, 64 GB Ubuntu 16.04 box, Tesla V100 16GB) ### **Parameters** - **X** (*Tensor*, shape [1, 3]) Currently, a single positive triples that will be used to create corruptions. - **entities_for_corruption** (*Tensor*) All the entity IDs which are to be used for generation of corruptions - **corrupt side** (*string*) Specifies which side of the triple to corrupt: - 's': corrupt only subject. - 'o': corrupt only object - 's+o': corrupt both subject and object - table_entity_lookup_left (tf.HashTable) Hash table of subject entities mapped to unique prime numbers - **table_entity_lookup_right** (*tf.HashTable*) Hash table of object entities mapped to unique prime numbers • table_reln_lookup (tf.HashTable) - Hash table of relations mapped to unique prime numbers #### Returns - out (*Tensor*, shape [n, 3]) An array of corruptions for the triples for x. - **out_prime** (*Tensor*, *shape* [n, 3]) An array of product of prime numbers associated with corruption triples or None based on filtered or non filtered version. ## generate_corruptions_for_fit ``` ampligraph.evaluation.generate_corruptions_for_fit (X, entities_list=None, eta=1, cor- rupt_side='s+o', entities_size=0, rnd=None) ``` Generate corruptions for training. Creates corrupted triples for each statement in an array of statements, as described by [TWR+16]. **Note:** Collisions are not checked, as this will be computationally expensive [TWR+16]. That means that some corruptions *may* result in being positive statements (i.e. *unfiltered* settings). **Note:** When processing large knowledge graphs, it may be useful to generate corruptions only using entities from a single batch. This also brings the benefit of creating more meaningful negatives, as entities used to corrupt are sourced locally. The function can be configured to generate corruptions *only* using the entities from the current batch. You can enable such behaviour be setting entities_size==-1. In such case, if entities_list=None all entities from the *current batch* will be used to generate corruptions. #### **Parameters** - **X** (*Tensor*, *shape* [n, 3]) An array of positive triples that will be used to create corruptions. - **entities_list** (*list*) List of entities to be used for generating corruptions. (default:None). if entities_list=None, all entities will be used to generate corruptions (default behaviour). - eta (int) The number of corruptions per triple that must be generated. - **corrupt_side** (*string*) Specifies which side of the triple to corrupt: - 's': corrupt only subject. - 'o': corrupt only object - 's+o': corrupt both subject and object - **entities_size** (*int*) Size of entities to be used while generating corruptions. It assumes entity id's start from 0 and are continuous. (default: 0). When processing large knowledge graphs, it may be useful to generate corruptions only using entities from a single batch. This also brings the benefit of creating more meaningful negatives, as entities used to corrupt are sourced locally. The function can be configured to generate corruptions *only* using the entities from the current batch. You can enable such behaviour be setting <code>entities_size==-1</code>. In such case, if <code>entities_list=None</code> all entities from the *current batch* will be used to generate corruptions. - rnd (numpy.random.RandomState) A random number generator. **Returns out** – An array of corruptions for a list of positive triples x. For each row in X the corresponding corruption indexes can be found at [index+i*n for i in range(eta)] **Return type** Tensor, shape [n * eta, 3] #### **Evaluation & Model Selection** Functions to evaluate the predictive power of knowledge graph embedding models, and routines for model selection. ``` evaluate_performance(X, model[, ...]) Evaluate the performance of an embedding model. select_best_model_ranking(model_class, X, Model selection routine for embedding models. ...) ``` ## evaluate_performance ``` ampligraph.evaluation.evaluate_performance (X, model, filter_triples=None, verbose=False, strict=True, rank_against_ent=None, corrupt side='s+o', use default protocol=True) ``` Evaluate the performance of an embedding model. Run the relational learning evaluation protocol defined in [BUGD+13]. It computes the rank of each positive triple against a number of negatives generated on the fly. Such negatives are compliant with the local closed world assumption (LCWA), as described in [NMTG16]. In practice, that means only one side of the triple is corrupted (i.e. either the subject or the object). **Note:** When *filtered* mode is enabled (i.e. *filtered_triples* is not None), to speed up the procedure, we adopt a hashing-based strategy to handle the set difference problem. This strategy is as described below: - We compute unique entities and relations in our dataset. - We assign unique prime numbers for entities (unique for subject and object separately) and for relations and create three separate hash tables. - For each triple in filter_triples, we get the prime numbers associated with subject, relation and object by mapping to their respective hash tables. We then compute the **prime product for the filter triple**. We store this triple product. - Since the numbers assigned to subjects, relations and objects are unique, their prime product is also unique. i.e. a triple (a,b,c) would have a different product compared to triple (c,b,a) as a,c of subject have different primes compared to a,c of object. - While generating corruptions for evaluation, we hash the triple's entities and relations and get the associated prime number and compute the **prime product for the corrupted triple**. - If this product is present in the products stored for the filter set, then we remove the corresponding corrupted triple (as it is a duplicate i.e. the corruption triple is present in filter_triples) - Using this approach we generate filtered corruptions for evaluation. **Execution Time:** This method takes ~20 minutes on FB15K using ComplEx (Intel Xeon Gold 6142, 64 GB Ubuntu 16.04 box, Tesla V100 16GB) **Hint:** When rank_against_ent=None, the method will use all distinct entities in the knowledge graph X to generate negatives to rank against. If X includes more than 2.5 million unique entities and relations, the method will return a runtime error. To solve the problem, it is recommended to pass the desired entities to use to generate corruptions to rank_against_ent. Besides, trying to rank a positive against an extremely large number of negatives may be overkilling. As a reference, the popular FB15k-237
dataset has ~15k distinct entities. The evaluation protocol ranks each positives against 15k corruptions per side. #### **Parameters** - **X**(ndarray, shape [n, 3]) An array of test triples. - model (EmbeddingModel) A knowledge graph embedding model - **filter_triples** (ndarray of shape [n, 3] or None) The triples used to filter negatives. - **verbose** (bool) Verbose mode - **strict** (bool) Strict mode. If True then any unseen entity will cause a RuntimeError. If False then triples containing unseen entities will be filtered out. - rank_against_ent (array-like) List of entities to use for corruptions. If None, will generate corruptions using all distinct entities. Default is None. - **corrupt_side** (*string*) Specifies which side of the triple to corrupt: - 's': corrupt only subject. - 'o': corrupt only object - 's+o': corrupt both subject and object. The same behaviour is obtained with use_default_protocol=True. **Note:** If corrupt_side='s+o' the function will return 2*n ranks. If corrupt_side='s' or corrupt_side='o', it will return n ranks, where n is the number of statements in X. The first n elements of ranks are obtained against subject corruptions. From n+1 until 2n ranks are obtained against object corruptions. • use_default_protocol (bool) - Flag to indicate whether to use the standard protocol used in literature defined in [BUGD+13] (default: True). If set to True it is equivalent to corrupt_side='s+o'. This corresponds to the evaluation protocl used in literature, where head and tail corruptions are evaluated separately. **Note:** When use_default_protocol=True the function will return 2*n ranks. The first n elements of ranks are obtained against subject corruptions. From n+1 until 2n ranks are obtained against object corruptions. **Returns ranks** — An array of ranks of positive test triples. When use_default_protocol=True or corrupt_side='s+o', the function returns 2*n ranks instead of n. In that case the first n elements of ranks are obtained against subject corruptions. From n+1 until 2n ranks are obtained against object corruptions. **Return type** ndarray, shape [n] or [2*n] ## **Examples** ``` >>> import numpy as np >>> from ampligraph.datasets import load_wn18 >>> from ampligraph.latent_features import ComplEx >>> from ampligraph.evaluation import evaluate_performance, mrr_score, hits_at_n_ ⇔score >>> >>> X = load_wn18() >>> model = ComplEx(batches_count=10, seed=0, epochs=10, k=150, eta=1, loss='nll', optimizer='adam') >>> >>> model.fit(np.concatenate((X['train'], X['valid']))) >>> >>> filter = np.concatenate((X['train'], X['valid'], X['test'])) >>> ranks = evaluate_performance(X['test'][:5], model=model, filter_triples=filter, corrupt_side='s+o', use_default_protocol=False) >>> ranks [1, 582, 543, 6, 31] >>> mrr_score(ranks) 0.24049691297347323 >>> hits_at_n_score(ranks, n=10) 0.4 ``` ## select_best_model_ranking ``` ampligraph.evaluation.select_best_model_ranking (model_class, X, param_grid, use_filter=False, early_stopping=False, early_stopping_params=\{\}, use_test_for_selection=True, rank_against_ent=None, corrupt_side='s+o', use_default_protocol=False, verbose=False) Model selection routine for embedding models. ``` **Note:** By default, model selection is done with raw MRR for better runtime performance (use_filter=False). The function also retrains the best performing model on the concatenation of training and validation sets Note we generate negatives at runtime according to the strategy described in :[BUGD+13]). #### **Parameters** - model_class (class) The class of the EmbeddingModel to evaluate (TransE, DistMult, ComplEx, etc). - **X** (dict) A dictionary of triples to use in model selection. Must include three keys: *train*, *val*, *test*. Values are ndarray of shape [n, 3].. - param_grid (dict) A grid of hyperparameters to use in model selection. The routine will train a model for each combination of these hyperparameters. - use_filter (bool) If True, will use the entire input dataset X to compute filtered MRR - **early_stopping** (bool) Flag to enable early stopping (default:False). If set to True, the training loop adopts the following early stopping heuristic: - The model will be trained regardless of early stopping for burn_in epochs. - Every check_interval epochs the method will compute the metric specified in criteria. If such metric decreases for stop_interval checks, we stop training early. Note the metric is computed on x_valid . This is usually a validation set that you held out. Also, because criteria is a ranking metric, it requires generating negatives. Entities used to generate corruptions can be specified, as long as the side(s) of a triple to corrupt. The method supports filtered metrics, by passing an array of positives to x_filter. This will be used to filter the negatives generated on the fly (i.e. the corruptions). **Note:** Keep in mind the early stopping criteria may introduce a certain overhead (caused by the metric computation). The goal is to strike a good trade-off between such overhead and saving training epochs. A common approach is to use MRR unfiltered: ``` early_stopping_params={x_valid=X['valid'], 'criteria': 'mrr'} ``` Note the size of validation set also contributes to such overhead. In most cases a smaller validation set would be enough. • early_stopping_params (dict) - Dictionary of parameters for early stopping. The following keys are supported: x_{valid} : ndarray, shape [n, 3]: Validation set to be used for early stopping. Uses X['valid'] by default. criteria: criteria for early stopping hits10, hits3, hits1 or mrr. (default) x filter: ndarray, shape [n, 3]: Filter to be used(no filter by default) burn_in: Number of epochs to pass before kicking in early stopping(default: 100) check_interval: Early stopping interval after burn-in(default:10) stop_interval: Stop if criteria is performing worse over n consecutive checks (default: 3) - use_test_for_selection (bool) Use test set for model selection. If False, uses validation set. Default(True) - rank_against_ent (array-like) List of entities to use for corruptions. If None, will generate corruptions using all distinct entities. Default is None. - **corrupt_side** (*string*) Specifies which side to corrupt the entities. s is to corrupt only subject. o is to corrupt only object s+o is to corrupt both subject and object - **use_default_protocol** (bool) Flag to indicate whether to evaluate head and tail corruptions separately(default:False). If this is set to true, it will ignore corrupt_side argument and corrupt both head and tail separately and rank triples. - **verbose** (bool) Verbose mode during evaluation of trained model ## Returns - **best_model** (*EmbeddingModel*) The best trained embedding model obtained in model selection. - **best_params** (*dict*) The hyperparameters of the best embedding model *best_model*. - **best_mrr_train** (*float*) The MRR (unfiltered) of the best model computed over the validation set in the model selection loop. - ranks_test (ndarray, shape [n]) The ranks of each triple in the test set X['test]. - mrr_test (*float*) The MRR (filtered) of the best model, retrained on the concatenation of training and validation sets, computed over the test set. ## **Examples** ``` >>> from ampligraph.datasets import load_wn18 >>> from ampligraph.latent_features import ComplEx >>> from ampligraph.evaluation import select_best_model_ranking >>> >>> X = load_wn18() >>> model_class = ComplEx >>> param_grid = { >>> "batches_count": [50], >>> "seed": 0, "epochs": [4000], >>> "k": [100, 200], >>> >>> "eta": [5,10,15], "loss": ["pairwise", "nll"], >>> >>> "loss_params": { "margin": [2] >>> >>> >>> "embedding_model_params": { >>> >>> "regularizer": ["LP", None], >>> "regularizer_params": { >>> "p": [1, 3], >>> "lambda": [1e-4, 1e-5] >>> >>> >>> "optimizer": ["adagrad", "adam"], "optimizer params":{ >>> "lr": [0.01, 0.001, 0.0001] >>> "verbose": false >>> >>> >>> select_best_model_ranking(model_class, X, param_grid, use_filter=True,... →verbose=True, early_stopping=True) ``` ## **Helper Functions** Utilities and support functions for evaluation procedures. | train_test_split_no_unseen(X[, test_size. | | Split into train and test sets. | |---|--|--| |]) | | | | create_mappings(X) | | Create string-IDs mappings for entities and relations. | | to_idx(X, ent_to_idx, rel_to_idx) | | Convert statements (triples) into integer IDs. | ## train_test_split_no_unseen ``` ampligraph.evaluation.train_test_split_no_unseen(X, test_size=100, seed=0, al- low_duplication=False) ``` Split into train and test sets. This function carves out a test set that contains only entities and relations which also occur in the training set. #### **Parameters** - **X** (ndarray, size[n, 3]) The dataset to split. - **test_size** (*int*, *float*) If int, the number of triples in the test set. If float, the percentage of total triples. - **seed** (*int*) A random seed used to split the dataset. - **allow_duplication** (boolean) Flag to indicate if the test set can contain duplicated triples. #### Returns - **X_train** (*ndarray*, *size*[*n*, 3]) The training set - **X_test** (*ndarray*, *size*[*n*, 3]) The test set ## **Examples** ``` >>> import numpy as np >>> from ampligraph.evaluation import train_test_split_no_unseen >>> # load your dataset to X >>> X = np.array([['a', 'y', 'b'], ['f', 'y', 'e'], >>> ['b', 'y', 'a'], >>> ['a', 'y', 'c'], ['c', 'y', 'a'], >>> >>> ['a', ['c', >>> ['b', 'y', 'c'], >>> ['f', 'y', 'e']]) >>> # if you want to split into train/test datasets >>> X_train, X_test = train_test_split_no_unseen(X, test_size=2) >>> X_train array([['a', 'y', 'b'], ['f', 'y', 'e'], ['b', 'y', 'a'], ['c', 'y', 'a'], ``` (continues on next page) (continued from previous page) ``` ['c', 'y', 'd'], ['b', 'y', 'c'], ['f', 'y', 'e']], dtype='<U1') >>> X_test array([['a', 'y', 'c'], ['a', 'y', 'd']], dtype='<U1') >>>
if you want to split into train/valid/test datasets, call it 2 times >>> X_train_valid, X_test = train_test_split_no_unseen(X, test_size=2) >>> X_train, X_valid = train_test_split_no_unseen(X_train_valid, test_size=2) >>> X_train array([['a', 'y', 'b'], ['b', 'y', 'a'], ['c', 'y', 'd'], ['b', 'y', 'c'], ['f', 'y', 'e']], dtype='<U1') >>> X_valid array([['f', 'y', 'e'], ['c', 'y', 'a']], dtype='<U1') >>> X_test array([['a', 'y', 'c'], ['a', 'y', 'd']], dtype='<U1') ``` #### create mappings ``` ampligraph.evaluation.create_mappings(X) ``` Create string-IDs mappings for entities and relations. Entities and relations are assigned incremental, unique integer IDs. Mappings are preserved in two distinct dictionaries, and counters are separated for entities and relations mappings. **Parameters X** (ndarray, shape [n, 3]) – The triples to extract mappings. #### Returns - rel_to_idx (dict) The relation-to-internal-id associations - ent_to_idx (dict) The entity-to-internal-id associations. ## to idx ``` ampligraph.evaluation.to_idx (X, ent_to_idx, rel_to_idx) ``` Convert statements (triples) into integer IDs. ## **Parameters** - **X** (*ndarray*) The statements to be converted. - ent_to_idx (dict) The mappings between entity strings and internal IDs. - rel_to_idx (dict) The mappings between relation strings and internal IDs. **Returns** X – The ndarray of converted statements. **Return type** ndarray, shape [n, 3] ## 3.3.4 Utils This module contains utility functions for neural knowledge graph embedding models. ## Saving/Restoring Models Models can be saved and restored from disk. This is useful to avoid re-training a model. | <pre>save_model(model[, model_name_path])</pre> | Save a trained model to disk. | |---|----------------------------------| | restore_model([model_name_path]) | Restore a saved model from disk. | ## save model ``` ampligraph.utils.save_model (model, model_name_path=None) Save a trained model to disk. ``` ## **Examples** ``` >>> import numpy as np >>> from ampligraph.latent_features import ComplEx >>> from ampligraph.utils import save_model >>> model = ComplEx(batches_count=2, seed=555, epochs=20, k=10) >>> X = np.array([['a', 'y', 'b'], ['b', 'y', 'a'], >>> ['a', 'y', 'c'], >>> ['c', 'y', 'a'], >>> ['a', 'y', 'd'], >>> ['C', 'y', 'd'], ['b', 'y', 'c'], >>> ['f', 'y', 'e']]) >>> >>> model.fit(X) >>> y_pred_before = model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']])) >>> example_name = 'helloworld.pkl' >>> save_model(model, model_name_path = example_name) >>> print(y_pred_before) [-0.29721245, 0.07865551] ``` #### **Parameters** - model (EmbeddingModel) A trained neural knowledge graph embedding model, the model must be an instance of TransE, DistMult, ComplEx, or HolE. - model_name_path (string) The name of the model to be saved. If not specified, a default name model with current datetime is named and saved to the working directory ## restore_model ``` ampligraph.utils.restore_model (model_name_path=None) Restore a saved model from disk. See also save_model(). ``` ### **Examples** ``` >>> from ampligraph.utils import restore_model >>> import numpy as np >>> example_name = 'helloworld.pkl' >>> restored_model = restore_model(model_name_path = example_name) >>> y_pred_after = restored_model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd \dots']])) >>> print(y_pred_after) [-0.29721245, 0.07865551] ``` **Parameters model_name_path** (string) – The name of saved model to be restored. If not specified, the library will try to find the default model in the working directory. **Returns** model – the neural knowledge graph embedding model restored from disk. Return type EmbeddingModel #### Visualization Functions to visualize embeddings. ``` create_tensorboard_visualizations(model, Export embeddings to Tensorboard. loc) ``` ## create_tensorboard_visualizations ``` ampligraph.utils.create_tensorboard_visualizations (model, loc, labels=None, write_metadata=True, export_tsv_embeddings=True) ``` Export embeddings to Tensorboard. This function exports embeddings to disk in a format used by TensorBoard and TensorBoard Embedding Projector. The function exports: - A number of checkpoint and graph embedding files in the provided location that will allow you to visualize embeddings using Tensorboard. This is generally for use with a local Tensorboard instance. - a tab-separated file of embeddings embeddings_projector.tsv. This is generally used to visualize embeddings by uploading to TensorBoard Embedding Projector. - embeddings metadata (i.e. the embeddings labels from the original knowledge graph), saved to metadata.tsv. Such file can be used in TensorBoard or uploaded to TensorBoard Embedding Projector. The content of loc will look like: **Note:** A TensorBoard guide is available at this address. **Note:** Uploading embeddings_projector.tsv and metadata.tsv to TensorBoard Embedding Projector will give a result similar to the picture below: ## **Examples** ``` >>> import numpy as np >>> from ampligraph.latent_features import TransE >>> from ampligraph.utils import create_tensorboard_visualizations >>> >>> X = np.array([['a', 'y', 'b'], ['b', 'y', 'a'], >>> 'y', 'c'], >>> ['a', 'y', 'd'], ['c', >>> 'y', 'd'], 'y', 'c'], >>> ['b', ['f', 'y', 'e']]) >>> >>> >>> model = TransE(batches_count=1, seed=555, epochs=20, k=10, loss='pairwise', loss_params={'margin':5}) >>> model.fit(X) >>> >>> create_tensorboard_visualizations(model, 'tensorboard_files') ``` ## **Parameters** - model (EmbeddingModel) A trained neural knowledge graph embedding model, the model must be an instance of TransE, DistMult, ComplEx, or HolE. - loc (string) Directory where the files are written. - **labels** (pd.DataFrame) Label(s) for each embedding point in the Tensorboard visualization. Default behaviour is to use the embeddings labels included in the model. - **export_tsv_embeddings** (bool (Default: True) If True, will generate a tab-separated file of embeddings at the given path. This is generally used to visualize embeddings by uploading to TensorBoard Embedding Projector. - write_metadata(bool (Default: True)) If True will write a file named 'metadata.tsv' in the same directory as path. ## 3.4 How to Contribute ## 3.4.1 Git Repo and Issue Tracking AmpliGraph repository is available on GitHub. A list of open issues is available here. The AmpliGraph Slack channel is available here. ## 3.4.2 How to Contribute We welcome community contributions, whether they are new models, tests, or documentation. You can contribute to AmpliGraph in many ways: - · Raise a bug report - File a feature request - Help other users by commenting on the issue tracking system - · Add unit tests - Improve the documentation - Add a new graph embedding model (see below) ## 3.4.3 Adding Your Own Model The landscape of knowledge graph embeddings evolves rapidly. We welcome new models as a contribution to Ampli-Graph, which has been built to provide a shared codebase to guarantee a fair evaluation and comparison acros models. You can add your own model by raising a pull request. To get started, read the documentation on how current models have been implemented. 3.4. How to Contribute 65 ## 3.4.4 Clone and Install in editable mode Clone the repository and checkout the develop branch. Install from source with pip. use the -e flag to enable editable mode: ``` git clone https://github.com/Accenture/AmpliGraph.git git checkout develop cd AmpliGraph pip install -e . ``` ## 3.4.5 Unit Tests To run all the unit tests: ``` $ pytest tests ``` See pytest documentation for additional arguments. ## 3.4.6 Documentation The project documentation is based on Sphinx and can be built on your local working copy as follows: ``` cd docs make clean autogen html ``` The above generates an HTML version of the documentation under docs/_built/html. ## 3.4.7 Packaging To build an AmpliGraph custom wheel, do the following: ``` pip wheel --wheel-dir dist --no-deps . ``` # 3.5 Examples ## 3.5.1 Train and evaluate an embedding model ``` import numpy as np from ampligraph.datasets import load_wn18 from ampligraph.latent_features import ComplEx from ampligraph.evaluation import evaluate_performance, mrr_score, hits_at_n_score def main(): # load Wordnet18 dataset: X = load_wn18() # Initialize a ComplEx neural embedding model with pairwise loss function: # The model will be trained for 300 epochs. model = ComplEx(batches_count=10, seed=0, epochs=20, k=150, eta=10, ``` (continues on next page) (continued from previous page) ``` # Use adam optimizer with learning rate 1e-3 optimizer='adam', optimizer_params={'lr':1e-3}, # Use pairwise loss with margin 0.5 loss='pairwise', loss_params={'margin':0.5}, # Use L2 regularizer with regularizer weight 1e-5 regularizer='LP', regularizer_params={'p':2, 'lambda':1e-5}, # Enable stdout messages (set to false if you don't want to... →display) verbose=True) # For evaluation, we can use a filter which would be used to filter out # positives statements created by the corruption procedure. # Here we define the filter set by concatenating all the positives filter = np.concatenate((X['train'], X['valid'], X['test'])) # Fit the model on training and validation set model.fit(X['train'], early_stopping = True, early_stopping_params = \ # validation set 'x_valid': X['valid'], 'criteria':'hits10', # Uses hits10 criteria for... →early stopping 'burn_in': 100, # early stopping kicks in_ →after 100 epochs 'check_interval':20, # validates every 20th epoch 'stop_interval':5, # stops if 5 successive →validation checks are bad. 'x_filter': filter, # Use filter for filtering out_ →positives 'corruption_entities':'all', # corrupt using all entities 'corrupt_side':'s+o' # corrupt subject and object → (but not at once) }) # Run the evaluation procedure on the test set (with filtering). # To disable filtering: filter_triples=None # Usually, we corrupt subject and object sides separately and compute ranks ranks =
evaluate_performance(X['test'], model=model, filter_triples=filter, use_default_protocol=True, # corrupt subj and obj_ ⇒ separately while evaluating verbose=True) # compute and print metrics: mrr = mrr_score(ranks) hits_10 = hits_at_n_score(ranks, n=10) print("MRR: %f, Hits@10: %f" % (mrr, hits_10)) # Output: MRR: 0.886406, Hits@10: 0.935000 if __name__ == "__main__": main() ``` 3.5. Examples 67 ## 3.5.2 Model selection ``` from ampligraph.datasets import load_wn18 from ampligraph.latent_features import ComplEx from ampligraph.evaluation import select_best_model_ranking def main(): # load Wordnet18 dataset: X_dict = load_wn18() model_class = ComplEx # Use the template given below for doing grid search. param_grid = { "batches_count": [10], "seed": 0, "epochs": [4000], "k": [100, 50], "eta": [5,10], "loss": ["pairwise", "nll", "self_adversarial"], # We take care of mapping the params to corresponding classes "loss_params": { #margin corresponding to both pairwise and adverserial loss "margin": [0.5, 20], #alpha corresponding to adverserial loss "alpha": [0.5] "embedding_model_params": { # generate corruption using all entities during training "negative_corruption_entities": "all" }, "regularizer": [None, "LP"], "regularizer_params": { "p": [2], "lambda": [1e-4, 1e-5] "optimizer": ["adam"], "optimizer_params":{ "lr": [0.01, 0.0001] "verbose": True # Train the model on all possibile combinations of hyperparameters. # Models are validated on the validation set. # It returnes a model re-trained on training and validation sets. best_model, best_params, best_mrr_train, \ ranks_test, mrr_test = select_best_model_ranking(model_class, # Class handle of_ \hookrightarrow the model to be used # Dataset X dict, # Parameter grid param_grid, # Use filtered set for eval use_filter=True, # corrupt subject and objects ⇒separately during eval ``` (continues on next page) (continued from previous page) ## 3.5.3 Get the embeddings #### 3.5.4 Save and restore a model ``` import numpy as np from ampligraph.latent_features import ComplEx from ampligraph.utils import save_model, restore_model model = ComplEx(batches_count=2, seed=555, epochs=20, k=10) X = np.array([['a', 'y', 'b'], ['b', 'y', 'a'], ['a', 'y', 'c'], ['c', 'y', 'a'], ['a', 'y', 'd'], ['c', 'y', 'd'], ['b', 'y', 'c'], ['f', 'y', 'e']]) model.fit(X) # Use the trained model to predict y_pred_before = model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']])) print (y_pred_before) #[-0.29721245, 0.07865551] # Save the model example_name = "helloworld.pkl" ``` (continues on next page) 3.5. Examples 69 (continued from previous page) ``` save_model(model, model_name_path = example_name) # Restore the model restored_model = restore_model(model_name_path = example_name) # Use the restored model to predict y_pred_after = restored_model.predict(np.array([['f', 'y', 'e'], ['b', 'y', 'd']])) print(y_pred_after) # [-0.29721245, 0.07865551] ``` # 3.5.5 Split dataset into train/test or train/valid/test ``` import numpy as np from ampligraph.evaluation import train_test_split_no_unseen from ampligraph.datasets import load_from_csv Assume we have a knowledge graph stored in my_folder/my_graph.csv, and that the content of such file is: a, y, b f, y, e b, y, a a, y, c c, y, a a, y, d c, y, d b, y, c f, y, e # Load the graph in memory X = load_from_csv('my_folder', 'my_graph.csv', sep=',') # To split the graph in train and test sets: # (In this toy example the test set will include only two triples) X_train, X_test = train_test_split_no_unseen(X, test_size=2) print (X_train) . . . X_train:[['a' 'y' 'b'] ['f' 'y' 'e'] ['b' 'v' 'a'] ['c' 'y' 'a'] ['c' 'y' 'd'] ['b' 'y' 'c'] ['f' 'y' 'e']] . . . print(X_test) . . . X_test: [['a' 'v' 'c'] ['a' 'y' 'd']] ``` (continues on next page) (continued from previous page) ``` . . . # To split the graph in train, validation, and test the method must be called twice: X_train_valid, X_test = train_test_split_no_unseen(X, test_size=2) X_train, X_valid = train_test_split_no_unseen(X_train_valid, test_size=2) print(X_train) X_train: [['a' 'y' 'b'] ['b' 'y' 'a'] ['c' 'y' 'd'] ['b' 'y' 'c'] ['f' 'y' 'e']] r r r print(X_valid) X_valid: [['f' 'y' 'e'] ['c' 'y' 'a']] print(X_test) X_test: [['a' 'y' 'c'] ['a' 'y' 'd']] ``` # 3.6 Performance #### 3.6.1 Predictive Performance We report the filtered MR, MRR, Hits@1,3,10 for the most common datasets used in literature. ## 3.6.2 FB15K-237 | Mode | eIMR | MRR Hits@Hits@Blits@Hyperparameters | | | | | |-------|-------|-------------------------------------|------|------|------|--| | Trans | E153 | 0.31 | 0.22 | 0.35 | 0.51 | k: 1000; epochs: 4000; eta: 50; loss: self_adversarial; loss_params: al- | | | | | | | | pha: 0.5; margin: 5; optimizer: adam; optimizer_params: lr: 0.0001; | | | | | | | | embedding_model_params: norm: 1; normalize_ent_emb: false; seed: 0; | | | | | | | | batches_count: 60 | | Dist- | 568 | 0.29 | 0.20 | 0.32 | 0.47 | k: 400; epochs: 4000; eta: 50; loss: self_adversarial; loss_params: al- | | Mult | | | | | | pha: 1; margin: 1; regularizer: LP; regularizer_params: lambda: 0.0001; | | | | | | | | p: 2; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; normal- | | | | | | | | ize_ent_emb: false; batches_count: 50 | | Com- | - 519 | 0.30 | 0.20 | 0.33 | 0.48 | k: 350; epochs: 4000; eta: 30; loss: self_adversarial; loss_params: alpha: | | plEx | | | | | | 1; margin: 0.5; optimizer: adam; optimizer_params: 1r: 0.0001; seed: 0; | | | | | | | | batches_count: 50 | | HolE | 297 | 0.28 | 0.19 | 0.31 | 0.46 | k: 350; epochs: 4000; eta: 30; loss: self_adversarial; loss_params: alpha: | | | | | | | | 1 margin: 0.5; optimizer: adam; optimizer_params: lr: 0.0001; seed: 0; | | | | | | | | batches_count: 50 | 3.6. Performance 71 **Note:** FB15K-237 validation and test sets include triples with entities that do not occur in the training set. We found 8 unseen entities in the validation set and 29 in the test set. In the experiments we excluded the triples where such entities appear (9 triples in from the validation set and 28 from the test set). ## 3.6.3 WN18RR | Mode | elMR | MRR | R Hits@Hits@Blits@Hyperparameters | | | | | |-------|-------|------|-----------------------------------|------|------|--|--| | Trans | E1536 | 0.23 | 0.07 | 0.35 | 0.51 | k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: mar- | | | | | | | | | gin: 1; optimizer: adam; optimizer_params: lr: 0.0001; regularizer: LP; | | | | | | | | | regularizer_params: lambda: 1.0e-05; p: 1; seed: 0; normalize_ent_emb: | | | | | | | | | false; embedding_model_params: norm: 1; batches_count: 100; | | | Dist- | 6853 | 0.44 | 0.42 | 0.45 | 0.50 | k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: mar- | | | Mult | | | | | | gin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; normal- | | | | | | | | | ize_ent_emb: false; batches_count: 25 | | | Com- | 8214 | 0.44 | 0.41 | 0.45 | 0.50 | k: 200; epochs: 4000; eta: 20; loss: nll; loss_params: margin: 1; op- | | | plEx | | | | | | timizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count: | | | | | | | | | 10; | | | HolE | 7305 | 0.47 | 0.43 | 0.48 | 0.53 | k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: | | | | | | | | | margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; | | | | | | | | | batches_count: 50 | | **Note:** WN18RR validation and test sets include triples with entities that do not occur in the training set. We found 198 unseen entities in the validation set and 209 in the test set. In the experiments we excluded the triples where such entities appear (210 triples in from the validation set and 210 from the test set). #### 3.6.4 YAGO3-10 | Mode | elMR | MRR Hits@Hits@Blits@Hyperparameters | | | | | | |-------|------|-------------------------------------|------|------|------|--|--| | Trans | E574 | 0.24 | 0.15 | 0.26 | 0.41 | k: 1000; epochs: 4000; eta: 50; loss: self_adversarial; loss_params: al- | | | | | | | | | pha: 0.5; margin: 5; optimizer: adam; optimizer_params: lr: 0.0001; | | | | | | | | | embedding_model_params: norm: 1; normalize_ent_emb: false; seed: 0; | | | | | | | | | batches_count: 150 | | | Dist- | 4903 | 0.49 | 0.41 | 0.54 | 0.63 | k: 400; epochs: 4000; eta: 50; loss: self_adversarial; loss_params: alpha: | | | Mult | | | | | | 1; margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; regular- | | | | | | | | | izer: LP; regularizer_params: lambda: 0.0001; p: 2; seed: 0; normal- | | | | | | | | | ize_ent_emb: false; batches_count: 100 | | | Com- | 7266 | 0.50 | 0.42 | 0.55 | 0.65 | k: 350; epochs: 4000; eta: 30; loss: self_adversarial; loss_params: alpha: | | | plEx | | | | | | 1; margin: 0.5; optimizer: adam; optimizer_params: lr: 0.0001; seed: 0; | | | | | | | | | batches_count: 100 | | | HolE | 6201 | 0.50 | 0.41 | 0.55 | 0.65 | k: 350; epochs: 4000; eta: 30; loss: self_adversarial; loss_params: alpha: | | | | | | | | | 1; margin: 0.5; optimizer: adam; optimizer_params: lr: 0.0001; seed: 0; | | | | | | | | | batches_count: 100 | | **Note:** YAGO3-10 validation and test sets include triples with entities that do not occur in the training set. We found 22 unseen entities in the validation set and 18 in the test set. In the experiments we excluded the triples where such entities appear (22 triples in from the validation set and 18 from the test set). ## 3.6.5 FB15K **Warning:** The dataset includes a large number of inverse relations, and its use in experiments has been deprecated. Use FB15k-237 instead. | Mode | elMR | MRR | RR Hits@Hits@Blits@Hyperparameters | | | | | |-------|------|------|------------------------------------|------|------|--|--| | Trans | E105 | 0.55 | 0.39 | 0.68 | 0.79 | k:
150; epochs: 4000; eta: 5; loss: pairwise; loss_params: margin: 0.5; | | | | | | | | | optimizer: adam; optimizer_params: lr: 0.0001; regularizer: LP; regular- | | | | | | | | | izer_params: lambda: 0.0001; p: 2; seed: 0; embedding_model_params: | | | | | | | | | norm: 1; normalize_ent_emb: false; batches_count: 10 | | | Dist- | 177 | 0.79 | 0.74 | 0.82 | 0.86 | k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: mar- | | | Mult | | | | | | gin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; normal- | | | | | | | | | ize_ent_emb: false; batches_count: 50 | | | Com- | 188 | 0.79 | 0.76 | 0.82 | 0.86 | k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: | | | plEx | | | | | | margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; | | | | | | | | | batches_count: 100 | | | HolE | 212 | 0.80 | 0.76 | 0.83 | 0.87 | k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: | | | | | | | | | margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; | | | | | | | | | batches_count: 50 | | # 3.6.6 WN18 **Warning:** The dataset includes a large number of inverse relations, and its use in experiments has been deprecated. Use WN18RR instead. | Mode | elMR | MRR | MRR Hits@Hits@Blits@Hyperparameters | | | | | |-------|-------|------|-------------------------------------|------|------|--|--| | Trans | E446 | 0.50 | 0.18 | 0.81 | 0.89 | k: 150; epochs: 4000; eta: 5; loss: pairwise; loss_params: margin: 0.5; | | | | | | | | | optimizer: adam; optimizer_params: lr: 0.0001; regularizer: LP; regular- | | | | | | | | | izer_params: lambda: 0.0001; p: 2; embedding_model_params: norm: 1; | | | | | | | | | normalize_ent_emb: false; seed: 0; batches_count: 10 | | | Dist- | 746 | 0.83 | 0.73 | 0.92 | 0.95 | k: 200; epochs: 4000; eta: 20; loss: nll; loss_params: margin: 1; opti- | | | Mult | | | | | | mizer: adam; optimizer_params: lr: 0.0005; seed: 0; normalize_ent_emb: | | | | | | | | | false; batches_count: 50 | | | Com- | - 715 | 0.94 | 0.94 | 0.95 | 0.95 | k: 200; epochs: 4000; eta: 20; loss: nll; loss_params: margin: 1; op- | | | plEx | | | | | | timizer: adam; optimizer_params: lr: 0.0005; seed: 0; batches_count: | | | | | | | | | 50 | | | HolE | 658 | 0.94 | 0.93 | 0.94 | 0.95 | k: 200; epochs: 4000; eta: 20; loss: self_adversarial; loss_params: | | | | | | | | | margin: 1; optimizer: adam; optimizer_params: lr: 0.0005; seed: 0; | | | | | | | | | batches_count: 50 | | To reproduce the above results: \$ cd experiments \$ python predictive_performance.py 3.6. Performance 73 **Note:** Running predictive_performance.py on all datasets, for all models takes ~43 hours on an Intel Xeon Gold 6142, 64 GB Ubuntu 16.04 box equipped with a Tesla V100 16GB. Experiments can be limited to specific models-dataset combinations as follows: #### 3.6.7 Runtime Performance Training the models on FB15K-237 (k=200, eta=2, batches_count=100, loss=nll), on an Intel Xeon Gold 6142, 64 GB Ubuntu 16.04 box equipped with a Tesla V100 16GB gives the following runtime report: | model | seconds/epoch | |----------|---------------| | ComplEx | 3.19 | | TransE | 3.26 | | DistMult | 2.61 | | HolE | 3.21 | # 3.7 Bibliography # 3.8 Changelog #### 3.8.1 1.0.3 - Fixed regression in RandomBaseline (#94) - Added TensorBoard Embedding Projector support (#86) - Minor bugfixing (#87, #47) #### 3.8.2 1.0.2 - Added multiclass loss (#24 and #22) - Updated the negative generation to speed up evaluation for default protocol.(#74) - Support for visualization of embeddings using Tensorboard (#16) - Save models with custom names. (#71) - Quick fix for the overflow issue for datasets with a million entities. (#61) - Fixed issues in train_test_split_no_unseen API and updated api (#68) - Added unit test cases for better coverage of the code(#75) - · Corrupt_sides: can now generate corruptions for training on both sides, or only on subject or object - Better error messages - · Reduced logging verbosity - Added YAGO3-10 experiments - Added MD5 checksum for datasets (#47) - Addressed issue of ambiguous dataset loaders (#59) - Renamed 'type' parameter in models.get_embeddings to fix masking built-in function - Updated String comparison to use equality instead of identity. - Moved save_model and restore_model to ampligraph.utils (but existing API will remain for several releases). - Other minor issues (#63, #64, #65, #66) #### 3.8.3 1.0.1 - · evaluation protocol now ranks object and subjects corruptions separately - Corruption generation can now use entities from current batch only - FB15k-237, WN18RR loaders filter out unseen triples by default - · Removed some unused arguments - · Improved documentation - · Minor bugfixing ## 3.8.4 1.0.0 - TransE - DistMult - ComplEx - FB15k, WN18, FB15k-237, WN18RR, YAGO3-10 loaders - · generic loader for csv files - RDF, ntriples loaders - · Learning to rank evaluation protocol - · Tensorflow-based negatives generation - save/restore capabilities for models - · pairwise loss - nll loss - self-adversarial loss - absolute margin loss - · Model selection routine - · LCWA corruption strategy for training and eval 3.8. Changelog 75 • rank, Hits@N, MRR scores functions # 3.9 About AmpliGraph is maintained by Accenture Labs Dublin. ## 3.9.1 Contact us The AmpliGraph Slack channel is available here. You can contact us by email at about@ampligraph.org. #### 3.9.2 How to Cite If you like AmpliGraph and you use it in your project, why not starring the project on GitHub! If you instead use AmpliGraph in an academic publication, cite as: #### 3.9.3 Contributors Active contributors (in alphabetical order) - Luca Costabello - · Chan Le Van - · Nicholas McCarthy - · Rory McGrath - Sumit Pai #### 3.9.4 License AmpliGraph is licensed under the Apache 2.0 License. # Bibliography - [aC15] Danqi and Chen. Observed versus latent features for knowledge base and text inference. In 3rd Workshop on Continuous Vector Space Models and Their Compositionality. ACL Association for Computational Linguistics, July 2015. URL: https://www.microsoft.com/en-us/research/publication/observed-versus-latent-features-for-knowledge-base-and-text-inference/. - [ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia: a nucleus for a web of open data. In *The semantic web*, 722–735. Springer, 2007. - [BHBL11] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: the story so far. In *Semantic services*, interoperability and web applications: emerging concepts, 205–227. IGI Global, 2011. - [BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In *Advances in neural information processing systems*, 2787–2795. 2013. - [DMSR18] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge graph embeddings. In *Procs of AAAI*. 2018. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366. - [HOSM17] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge transfer for out-of-knowledge-base entities: A graph neural network approach. *IJCAI International Joint Conference on Artificial Intelligence*, pages 1802–1808, 2017. - [HS17] Katsuhiko Hayashi and Masashi Shimbo. On the equivalence of holographic and complex embeddings for link prediction. *CoRR*, 2017. URL: http://arxiv.org/abs/1702.05563, arXiv:1702.05563. - [KBK17] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base completion: baselines strike back. *CoRR*, 2017. URL: http://arxiv.org/abs/1705.10744, arXiv:1705.10744. - [MBS13] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. Yago3: a knowledge base from multi-lingual wikipedias. In *CIDR*. 2013. - [NMTG16] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational machine learning for knowledge graphs. *Procs of the IEEE*, 104(1):11–33, 2016. - [NRP+16] Maximilian Nickel, Lorenzo Rosasco, Tomaso A Poggio, and others. Holographic embeddings of knowledge graphs. In *AAAI*, 1955–1961. 2016. - [Pri10] Princeton. About wordnet. Web, 2010. https://wordnet.princeton.edu. - [SKW07] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge. In *Procs of WWW*, 697–706. ACM, 2007. - [SDNT19] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: knowledge graph embedding by relational rotation in complex space. In *International Conference on Learning Representations*. 2019. URL: https://openreview.net/forum?id=HkgEQnRqYQ. - [TCP+15] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael Gamon. Representing text for joint embedding of text and knowledge bases. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, 1499–1509. 2015. - [TWR+16] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex embeddings for simple link prediction. In *International Conference on Machine Learning*, 2071–2080. 2016. - [YYH+14] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases. *arXiv preprint*, 2014. 78 Bibliography # Python Module Index ``` d ampligraph.datasets,9 e ampligraph.evaluation,49 l ampligraph.latent_features,17 u ampligraph.utils,61 ``` 80 Python Module Index # Index | Symbols | graph.latent_features.Loss method), 42 | |--|--| | init() (ampligraph.latent_features.AbsoluteMarg | mLinit_hyperparams() (ampli- | | method), 46 | graph.latent_features.Regularizer method), | | init() (ampligraph.latent_features.ComplEx | 44 | | method), 28 | _initialize_early_stopping() (ampli- | |
init() (ampligraph.latent_features.DistMult | graph.latent_features.EmbeddingModel | | method) 24 | method), 41 | | init() (ampligraph.latent_features.EmbeddingMo | delinitialize_eval_graph() (ampli- | | method), 37 | grapn.iaieni_jeaiures.EmbeaaingMoaei | | init() (ampligraph.latent_features.HolE | method), 42 | | method), 33 | _initialize_parameters() (ampli- | | init() (ampligraph.latent_features.LPRegularizer | graph.latent_features.EmbeddingModel | | method), 48 | method), 40 | | init() (ampligraph.latent_features.Loss | _inputs_check() (ampligraph.latent_features.Loss | | method), 42 | method), 42 | | init() (ampligraph.latent_features.NLLLoss | _load_model_from_trained_params()(ampli- | | method), 47 | graph.latent_features.EmbeddingModel | | init() (ampligraph.latent_features.NLLMulticlass | method), 41 | | method), 48 | _perform_early_stopping_test() (ampli- | | init() (ampligraph.latent_features.PairwiseLoss | graph.latent_features.EmbeddingModel | | method), 45 | method), 41 | | init() (ampligraph.latent_features.RandomBaseli | ne save_trained_params() (ampli- | | method), 18 | grapn.tatent_jeatures.EmbeaaingMoaet | | init() (ampligraph.latent_features.Regularizer | method), 41 | | method), 43 | Δ | | init() (ampligraph.latent_features.SelfAdversaria | lLoss | | method), 46 | AbsoluteMarginLoss (class in ampli- | | init() (ampligraph.latent_features.TransE | graph.latent_features), 45 | | method), 19 | ampligraph.datasets (module), 9 | | _apply() (ampligraph.latent_features.Loss method), | ampligraph.evaluation (module), 49 | | 43 | ampligraph.latent_features (module), 17 | | _apply() (ampligraph.latent_features.Regularizer | ampligraph.utils (module), 61 apply() (ampligraph.latent_features.Loss method), 43 | | method), 44 | | | _fn() (ampligraph.latent_features.EmbeddingModel | apply() (ampligraph.latent_features.Regularizer method), 44 | | method), 40 | method), 44 | | _get_model_loss() (ampli- | C | | graph.latent_features.EmbeddingModel | Complex (class in ampligraph.latent_features), 27 | | method), 40 | configure_evaluation_protocol() (ampli- | | _init_hyperparams() (ampli- | graph.latent_features.EmbeddingModel | | | graph.iaieni_jeaiures.EmbeaaingModei | | <pre>method), 41 create_mappings() (in module ampli-</pre> | <pre>get_state() (ampligraph.latent_features.Regularizer method), 43</pre> | |---|---| | graph.evaluation), 61 | Н | | create_tensorboard_visualizations() (in module ampligraph.utils), 63 | hits_at_n_score() (in module ampli- | | D | graph.evaluation), 51 | | DistMult (class in ampligraph.latent_features), 23 | HolE (class in ampligraph.latent_features), 32 | | E | L | | EmbeddingModel (class in ampli- | load_fb15k() (in module ampligraph.datasets), 11 load_fb15k_237() (in module ampli- | | graph.latent_features), 37 | graph.datasets), 12 | | end_evaluation() (ampli-
graph.latent_features.EmbeddingModel | load_from_csv() (in module ampligraph.datasets), 15 | | method), 42 | <pre>load_from_ntriples() (in module ampli-</pre> | | evaluate_performance() (in module ampli-
graph.evaluation), 55 | graph.datasets), 16 load_from_rdf() (in module ampligraph.datasets), 16 | | F | load_wn18() (in module ampligraph.datasets), 10 | | fit() (ampligraph.latent_features.ComplEx method), 29 | load_wn18rr() (in module ampligraph.datasets), 13 load_yago3_10() (in module ampligraph.datasets), | | <pre>fit() (ampligraph.latent_features.DistMult method),</pre> | 12 Loss (class in ampligraph.latent_features), 42 | | fit() (ampligraph.latent_features.EmbeddingModel method), 38 | LPRegularizer (class in ampligraph.latent_features), 48 | | fit () (ampligraph.latent_features.HolE method), 34 | M | | fit () (ampligraph.latent_features.RandomBaseline method), 18 fit () (ampligraph.latent_features.TransE method), 21 | mr_score() (in module ampligraph.evaluation), 51 mrr_score() (in module ampligraph.evaluation), 50 | | G | N | | generate_corruptions_for_eval() (in mod-
ule ampligraph.evaluation), 53 | NLLLoss (class in ampligraph.latent_features), 47
NLLMulticlass (class in ampligraph.latent_features), | | generate_corruptions_for_fit() (in module ampligraph.evaluation), 54 | 47
P | | get_embedding_model_params() (ampli-
graph.latent_features.EmbeddingModel | PairwiseLoss (class in ampligraph.latent_features), 45 | | <pre>method), 41 get_embeddings() (ampli-</pre> | <pre>predict() (ampligraph.latent_features.ComplEx</pre> | | graph.latent_features.ComplEx method), 31 | method), 31 predict() (ampligraph.latent_features.DistMult | | get_embeddings() (ampli- | method), 27 predict() (ampligraph.latent_features.EmbeddingModel) | | graph.latent_features.DistMult method), 26 | method), 39 | | get_embeddings() (ampli- | <pre>predict() (ampligraph.latent_features.HolE method), 35</pre> | | graph.latent_features.EmbeddingModel
method), 39 | <pre>predict() (ampligraph.latent_features.RandomBaseline</pre> | | get_embeddings() (ampli- | method), 18 predict() (ampligraph.latent_features.TransE | | <pre>graph.latent_features.HolE method), 35 get_embeddings() (ampli-</pre> | method), 22 | | graph.latent_features.TransE method), 22 | R | | <pre>get_state() (ampligraph.latent_features.Loss method), 42</pre> | RandomBaseline (class in ampli- | | memou), 12 | graph latent features) 17 | 82 Index ``` rank_score() (in module ampligraph.evaluation), 49 Regularizer (class in ampligraph.latent_features), 43 restore_model() (in module ampligraph.utils), 62 restore_model_params() graph.latent_features. Embedding Model method), 41 S save_model() (in module ampligraph.utils), 62 select_best_model_ranking() (in module ampligraph.evaluation), 57 SelfAdversarialLoss ampli- (class in graph.latent_features), 46 set_filter_for_eval() (ampli- graph.latent_features.EmbeddingModel method), 41 Т to_idx() (in module ampligraph.evaluation), 61 train_test_split_no_unseen() (in module ampligraph. evaluation),\,60 TransE (class in ampligraph.latent_features), 18 ``` Index 83